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ABSTRACT

OPTIMAL POWER ALLOCATION TECHNIQUES FOR
VECTOR PARAMETER ESTIMATION WITH FISHER

INFORMATION BASED OBJECTIVES

Dog̃a Gürgünog̃lu

M.S. in Electrical and Electronics Engineering

Advisor: Sinan Gezici

June 2021

In this thesis, optimal power allocation problems are investigated for vector pa-

rameter estimation according to various Fisher information based optimality cri-

teria. By considering a generic observation model involving a linear/nonlinear

transformation of the parameter vector and an additive noise component with

an arbitrary joint probability distribution, six different optimal power allocation

problems are formulated based on Fisher information based objective functions.

Various closed-form solutions are derived for the proposed problems using opti-

mization theoretic approaches for the cases in which the transformation acting

on the parameter vector is linear. Also, the results are extended to cases in

which nuisance parameters exist in the system model, and to the cases when

the transformation acting on the parameter vector is nonlinear. It is shown that

the proposed methods are also valid for the provided extensions under certain

conditions. Numerical examples are presented to investigate performance of the

proposed power allocation strategies, and it is shown that they provide significant

performance gains over the equal power allocation strategy.

Keywords: Cramér-Rao lower bound, estimation, Fisher information, power adap-

tation.
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ÖZET

FISHER BİLGİSİ TABANLI OBJEKTİFLERLE
VEKTÖR PARAMETRE KESTİRİMİ İÇİN OPTİMAL

GÜÇ DAĞITIM TEKNİKLERİ

Dog̃a Gürgünog̃lu

Elektrik Elektronik Mühendisliği, Yüksek Lisans

Tez Danışmanı: Sinan Gezici

Haziran 2021

Bu tezde vektör parametre kestirimi için optimal güç adaptasyonu problemleri,

farklı Fisher bilgisi temelli optimallik kriterlerine göre incelenmektedir. Parame-

tre vektörünün doğrusal/doğrusal olmayan bir dönüşümünü ve herhangi bir

olasılık dağılımına sahip olabilecek toplanır bir gürültü bileşenini içeren genel

bir gözlem modeli benimsenip, farklı Fisher bilgisi temelli amaç fonksiyonları

kullanılarak altı farklı optimal güç paylaştırma problemi formüle edilmektedir.

Optimizasyon kuramsal yaklaşımlar ile formüle edilen problemler için sistem

dönüşümünün doğrusal olduğu durumlar için çeşitli kapalı yapıda çözümler elde

edilmektedir. Aynı zamanda çözümler, doğrusal olmayan dönüşümlere ve önemsiz

parametrelerin var olduğu durumlara uyarlanmaktadır ve önerilen yöntemlerin

belirli koşullar altında bu durumlarda da uygulanabileceği gösterilmektedir.

Önerilen güç paylaşım stratejilerinin performansının incelenmesi için sayısal

örnekler sunulmakta ve güç uyarlamasının eşit güç dağılımına kıyasla önemli per-

formans kazançları getirdiği gösterilmektedir.

Anahtar sözcükler : Cramér-Rao alt sınırı, kestirim, Fisher bilgisi, güç uyarlaması.
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Chapter 1

Introduction

In vector parameter estimation, the aim is to design an optimal estimator for a

number of unknown parameters based on a set of observations. The design of an

optimal estimator commonly involves the calculation of posterior distributions

or likelihood functions based on the statistical relation between the observation

and the parameter vector. If the prior distribution of parameters is known, the

Bayesian approach can be adopted and estimators such as the minimum mean

squared error (MMSE) estimator, the minimum mean absolute error (MMAE)

estimator, or the maximum a posteriori probability (MAP) estimator can be

derived based on the posterior distribution, i.e., the probability distribution of

the parameter vector given the observation [1]. On the other hand, in the absence

of prior information, parameters can be modeled as a deterministic unknown

vector and estimators such as the minimum variance unbiased estimator (MVUE),

the maximum likelihood (ML) estimator, or the best linear unbiased estimator

(BLUE) can be employed for vector parameter estimation [2].

Performance of the aforementioned estimators depends on system parameters

such as noise variance and linear/nonlinear transformations acting on the param-

eter vector, and it is usually challenging to find exact and closed-form expressions

for estimation errors of the corresponding estimators. Therefore, in order to as-

sess estimation performance, various theoretical bounds such as the Cramer-Rao
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lower bound (CRLB), Ziv-Zakai lower bound (ZZLB), and Barankin-type bounds

are used as gold standards [3]. Such bounds are mainly determined by the statis-

tics of the observation, which depends on system parameters. This means that for

a given system model, estimation performance can be improved only to a certain

extent by using an optimal estimator. In order to realize further improvements in

estimation performance, the effects of the system on the parameter vector should

be adapted. One common way of achieving such an improvement is to perform

power adaptation, i.e., transmitting different components of the parameter vec-

tor with different power levels [4]. Since the total available power is usually

limited [5], the problem of power adaptation arises as a constrained optimiza-

tion problem. In this manuscript, the aim is to develop optimal power allocation

strategies for vector parameter estimation in the absence of prior information by

using Fisher information based optimality criteria [2, Section IV.E.1], [6], [7, Sec-

tion 9.2.1].

1.1 Related Work

Power adaptation and in general resource allocation have been considered for

various estimation problems in the literature. For example, in wireless sensor

networks (WSNs), the problem of optimal resource allocation for vector param-

eter estimation with respect to various performance metrics is the main focus

in many studies. In [8], the optimal transmit power allocation and quantization

rate allocation schemes are investigated to minimize the average mean squared

error (MSE). In [9], the optimal power allocation strategy that minimizes the

`2-norm of the transmit power vector is derived under a maximum variance con-

straint for the best linear unbiased estimator. In addition, the optimal codebook

is computed via the Lloyd algorithm when the channel state information (CSI)

is limited, which is usually the case for large WSNs. In [4], estimation of an un-

known Gaussian random vector with known mean vector and covariance matrix

is considered in a WSN setting, where the fusion center uses the linear MMSE

(LMMSE) estimator to estimate the parameter vector based on sensor obser-

vations, which are fading channel impaired and noise corrupted versions of the

2



transmitted parameter vector. An upper bound on the MSE is minimized by first

computing the optimal bit allocation to minimize the MSE distortion. Then, the

optimal power allocation strategy is computed to minimize the channel errors.

In [10], optimal power allocation for vector parameter estimation is investigated

with the aim of maximizing the average Bayesian Fisher information between the

random parameter vector and the observation vector. In [11], optimal power allo-

cation schemes for LMMSE estimation are derived by taking channel estimation

errors into account. In [12–21], the optimal power allocation problem is consid-

ered for position estimation in wireless localization and radar systems. In [14],

the transmit power allocation problem is formulated as a semidefinite program

by using the squared position error bound as the objective function. In [18], the

total transmit power is minimized by imposing a constraint on the CRLB for

target localization in a distributed multiple-radar system. In addition, the dual

problem of CRLB minimization for a predefined total power budget is considered.

It is noted that theoretical lower bounds for estimation error are commonly

used in the literature to define optimality criteria for developing power adap-

tation strategies in estimation problems [10], [12–22]. In the absence of prior

information, lower bounds generated from the Fisher information matrix (FIM)

are usually adopted due to their practicality. As the most widely used bound,

the CRLB is obtained as the inverse of the FIM and specifies a lower limit on the

covariance matrix of any unbiased estimator with respect to the positive semidefi-

nite cone. Various scalarizations of the FIM are employed in the literature [18,22].

In particular, the log-determinant of the FIM, the maximum (minimum) eigen-

value of the CRLB (FIM), the maximum diagonal entry of the CRLB, the trace of

the FIM, and the minimum diagonal entry of the FIM are utilized for quantifying

estimation performance from various perspectives such as estimation robustness

and probabilistic confinement of estimator error [7, Section 9.2.1], [23–28]. In

this manuscript, the power adaptation problem for vector parameter estimation

is considered according to such Fisher information based optimality criteria and

the corresponding optimal strategies are characterized.
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1.2 Our Contribution

Although there exist a multitude of studies on power allocation for various esti-

mation problems in the literature, a general investigation of the optimal power

allocation problem for vector parameter estimation according to various Fisher

information based criteria has not been available. In particular, we consider a

generic additive noise model, where the observation vector is a linear or nonlinear

function of the parameter vector corrupted by additive noise with an arbitrary

probability distribution [29]. Based on this generic model, we first present the

FIM in terms of the system parameters, including the power allocation param-

eters. Then, we formulate optimal power allocation problems according to six

different estimation performance criteria based on the FIM, and derive various

closed-form solutions [29]. We also extend our results to cases in which nuisance

parameters exist in the problem [29]. The main contributions and novelty of this

thesis can be summarized as follows:

• According to various Fisher information based optimality criteria, we pro-

pose optimal power allocation problems for vector parameter estimation

by considering a generic system model, where the parameter vector is pro-

cessed by any linear/nonlinear transformation and corrupted by additive

noise with a generic probability distribution.

• Based on optimization theoretic approaches, we provide various closed-form

solutions for the proposed power allocation problems.

• We show that the proposed optimal power allocation strategies are also valid

for nonlinear system models under certain conditions and in the presence

of nuisance parameters.

In addition, we provide numerical examples to illustrate the performance of the

proposed strategies and compare them with the equal power allocation strategy.

It should be noted that providing closed-form solutions for optimal power allo-

cation is important for real-time applications due to delay and computational

complexity requirements.
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1.3 Organization of the Thesis

The rest of the thesis is organized as follows: The system model is presented

in Section 2 and optimal power allocation strategies are derived in Section 3. In

Section 4, extensions to nonlinear models and presence of nuisance parameters are

considered. Numerical results are provided in Section 5 followed by the concluding

remarks in Section 6.
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Chapter 2

System Model

Consider the following linear1 model relating a vector of unknown deterministic

parameters θ = [θ1, . . . , θk]
T ∈ Rk with their measurements X ∈ Rn:

X = FTPθ + N (2.1)

In (2.1), F is a k × n real matrix with full row rank (k ≤ n) that is assumed to

be known, N ∈ Rn is the additive noise vector with a joint probability density

function fN(·), which is independent of θ, and P is a k × k diagonal power

allocation matrix (to be optimized) expressed as

P =


√
p1 0

. . .

0
√
pk

 (2.2)

subject to the total power constraint

k∑
i=1

pi ≤ PΣ (2.3)

where pi denotes the power allocated to the parameter θi and PΣ denotes the

(available) total power. For the linear model given in (2.1), the FIM of the

1Extensions to nonlinear models are presented in Section 4.
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measurement vector X with respect to the parameter vector θ is obtained as [30,

Lemma 5].

I(X;θ) = PFI(N)FTP, (2.4)

where P = PT is employed, and I(N) is a special form of the FIM, namely

the FIM of the random vector N with respect to a translation parameter φ [30,

Equation 8], defined as

I(N) = I(φ + N;φ)

=

∫
1

f(n)

(
∂f(n)

∂n

)(
∂f(n)

∂n

)T
dn

(2.5)

It is noted that the FIM under translation is a function of only the probability

density function (pdf) of the random vector N, and consequently, I(X;θ) in (2.4)

does not depend on the parameter vector θ.

In the following, we provide closed-form solutions for optimal power allocation

problems by considering various estimation accuracy criteria based on the FIM

in (2.4).
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Chapter 3

Optimal Power Allocation for

Vector Parameter Estimation

3.1 Average Mean Squared Error Criterion

The inverse of the FIM, known as the Cramer-Rao lower bound (CRLB) provides

a lower bound on the MSE of any unbiased estimator θ̂(X) via the following

matrix inequality [2]:

Cov(θ̂(X)) ≥ I−1(X;θ) (3.1)

where Cov(θ̂(X)) = E[(θ̂(X)− θ)(θ̂(X)− θ)T ] due to the unbiasedness and the

expectation is taken with respect to the pdf of X given θ. Consequently, the

lower bound on the average MSE1 of the vector parameter can be stated as

E
[
‖θ̂(X)− θ‖2

]
≥ tr{I−1(X;θ)} (3.2)

Consideration of the lower bound in (3.2) as a performance metric in optimal

design problems is referred as the A-optimality criterion in the literature [7, 23].

The optimal power allocation problem that minimizes the lower bound on the

1Dividing both sides of the inequality in (3.2) by k, a lower bound on the average MSE is
obtained. Therefore, minimizing the trace expression in (3.2) is equivalent to minimizing the
lower bound on the average MSE.
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average MSE subject to a sum-power constraint can be formulated as

min
{pi}ki=1

tr{I−1(X;θ)}

s.t.
k∑
i=1

pi ≤ PΣ

pi ≥ 0, i = 1, 2, . . . , k

(3.3)

For the convenience of notation, two system dependent matrices can be defined

as
J , FI(N)FT

A , J−1
(3.4)

From (2.4) and (3.4), the FIM with respect to the parameter vector θ and

the corresponding CRLB are expressed respectively as I(X;θ) = PJP and

I−1(X;θ) = P−1AP−1. Then, the objective function in (3.3) can be written

in terms of the power allocation coefficients and the diagonal entries of A as

tr{I−1(X;θ)} = tr{P−1AP−1}

= tr{(P−1)2A}

=
k∑
i=1

aii
pi

(3.5)

where aii denotes the ith diagonal entry of A. From (2.5) and (3.4), it is noted

that A is positive semi-definite; hence, aii ≥ 0 for i = 1, . . . , k. To have a

non-trivial problem, it is assumed that at least one element of {aii}ki=1 is strictly

positive.

As the objective function is convex (see (3.5)) and the constraints are linear, the

problem in (3.3) is a convex optimization problem. In addition, Slater’s condition

holds [24]. Therefore, Karush-Kuhn-Tucker (KKT) conditions are necessary and

sufficient for optimality. From (3.5), the Lagrangian for (3.3) is expressed as

L
(
{pi}ki=1, {υi}k+1

i=1

)
=

k∑
i=1

aii
pi

+ υ1

(
k∑
i=1

pi − PΣ

)
−

k∑
i=1

υi+1pi (3.6)

where υ1, . . . , υk+1 are the dual variables. Then, KKT conditions for optimality

are obtained as follows [24]:
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• Primal Feasibility: The optimal power allocation strategy {p∗i }ki=1 must

satisfy the constraints
∑k

i=1 p
∗
i ≤ PΣ and p∗i ≥ 0, ∀i ∈ {1, . . . , k}.

• Dual Feasibility: The dual variables must be non-negative, i.e., υ∗i ≥ 0 for

i = 1, . . . , k + 1.

• Stationarity: The derivatives of the Lagrangian in (3.6) with respect to pi

must be equal to zero at pi = p∗i for i = 1, . . . , k. That is,

∂L
∂pi

∣∣∣∣
pi=p∗i

= − aii
(p∗i )

2
+ υ∗1 − υ∗i+1 = 0 (3.7)

for i = 1, . . . , k.

• Complementary Slackness: At the optimal solution, the following conditions

hold:

υ∗1

(
k∑
i=1

p∗i − PΣ

)
= 0 (3.8)

υ∗i+1p
∗
i = 0, i = 1, . . . , k (3.9)

For the condition in (3.8), the case of υ∗1 = 0 is not possible since the derivative

in (3.7) could be set to zero only for p∗i →∞ in that case (for some positive aii),

which would violate the primal feasibility condition. Therefore, (3.8) implies that

υ∗1 > 0 and
k∑
i=1

p∗i = PΣ (3.10)

That is, full-power utilization is required for optimality2. Then, two cases are

investigated depending on the values of aii’s. Let Az and Ap denote the sets of

indices i for which aii’s are zero and positive, respectively. That is, Az = {i ∈
{1, . . . , k} | aii = 0} and Ap = {i ∈ {1, . . . , k} | aii > 0}.

Case 1: Consider an index i such that i ∈ Az. Suppose that p∗i > 0. Then,

(3.9) implies that υ∗i+1 = 0 and the expression in (3.7) becomes equal to υ∗1.

2This fact can also be seen by noting that the objective function in (3.5) is a decreasing
function of pi’s.
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However, υ∗1 > 0 as discussed before, which leads to a contradiction (i.e., the

stationary condition could not be satisfied). Hence, it is concluded that

p∗i = 0 for i ∈ Az. (3.11)

Case 2: Consider an index i such that i ∈ Ap. In that case, it can be concluded

from (3.7)–(3.9) that p∗i > 0 and υ∗i+1 = 0 for i ∈ Ap. Then, (3.7) leads to

p∗i =

√
aii
υ∗1

for i ∈ Ap (3.12)

From (3.10), a relation for υ∗1 can be obtained as

k∑
j=1

p∗j =
∑
i∈Ap

p∗j =
∑
j∈Ap

√
ajj
υ∗1

= PΣ, (3.13)

which yields
1√
υ∗1

=
PΣ∑

j∈Ap

√
ajj

=
PΣ∑k

j=1

√
ajj

(3.14)

Based on (3.11), (3.12) and (3.14), the optimal power allocation strategy to

minimize the average MSE in (3.3) is specified as follows:

p∗i =
PΣ
√
aii∑k

j=1

√
ajj

, i = 1, . . . , k (3.15)

Hence, a closed-form solution to the problem in (3.3) is obtained.

11



3.2 Shannon Information Criterion

An alternative criterion for estimation accuracy is to maximize the log-

determinant of the FIM, i.e.,

IS(X;θ) = log det I(X;θ) (3.16)

which is associated with volume of confidence ellipsoid containing the estimation

error [24, Section 7.5.2]. This criterion is known as the Shannon information

criterion, and also the D-optimal design in the literature [23,25,26].

The optimal power allocation problem with the objective of maximizing the

Shannon information under the sum-power constraint can be expressed as

max
{pi}ki=1

log det I(X;θ)

s.t.
k∑
i=1

pi ≤ PΣ

pi ≥ 0, i = 1, . . . , k

(3.17)

The problem in (3.17) involves the maximization of a concave function, and the

feasible region has an interior point; hence, Slater’s condition is satisfied. Con-

sequently, KKT conditions are necessary and sufficient for optimality. In order

to find the optimal solution, the Shannon information can be expressed in terms

of the known matrices. From (2.4) and (3.4), the Shannon information can be

written as
log det I(X;θ) = log det PJP

= 2 log det P + log det J

= 2
k∑
i=1

log pi + log det J

(3.18)

As seen in (3.18), the Shannon information separates into a power allocation

dependent component and a system dependent component, the latter being con-

stant for a fixed F and I(N). Therefore, it suffices to consider
∑k

i=1 log pi in order

to maximize the Shannon information. Therefore, the problem in (3.17) reduces

12



to

max
{pi}ki=1

k∑
i=1

log pi

s.t.
k∑
i=1

pi ≤ PΣ

pi ≥ 0, i = 1, . . . , k

(3.19)

which is a convex optimization problem.3

Considering the minimization of the negative of the objective function in (3.19),

the Lagrangian can be expressed as

L
(
{pi}ki=1, {υi}k+1

i=1

)
= −

k∑
i=1

log pi + υ1

(
k∑
i=1

pi − PΣ

)
−

k+1∑
i=2

υipi−1 (3.20)

The KKT conditions are the same as those in Section 3.1 except that the sta-

tionarity condition becomes

∂L
∂pi

∣∣∣∣
pi=p∗i

= − 1

p∗i
+ υ∗1 − υ∗i+1 = 0 (3.21)

for i = 1, . . . , k. From the complementary slackness condition in (3.8) and the

stationarity condition in (3.21), it is concluded that υ∗1 > 0 and
∑k

i=1 p
∗
i = PΣ

must hold for not violating the primal feasibility. In addition, the fact that

υ∗1 > 0 together with the conditions in (3.9) and (3.21) imply that υ∗i+1 = 0 for

i = 1, . . . , k. Hence, (3.21) becomes p∗i = 1/υ1 for i = 1, . . . , k. Together with∑k
i=1 p

∗
i = PΣ, the optimal power allocation strategy according to the Shannon

information criterion is calculated as

p∗i =
PΣ

k
, i = 1, . . . , k (3.22)

Corresponding to the optimal strategy, the maximum Shannon information is

achieved as

I∗S(X;θ) = 2k log

(
PΣ

k

)
+ log det J (3.23)

It is noted that the optimal power allocation strategy in (3.22) corresponds to

allocating equal power to all the parameters at the sum-power limit. Since the

3This problem is equivalent to maximizing the product of nonnegative numbers whose sum
is constant
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optimal power allocation strategy does not depend on J or A, the system param-

eters do not affect the optimal solution according to the Shannon information

criterion.
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3.3 Worst-Case Error Variance Criterion

The worst-case error variance criterion is a measure of robustness rather than av-

erage estimation accuracy and is associated with the maximum eigenvalue of the

CRLB [24], [27]. In order to reduce the worst-case error variance, the maximum

eigenvalue of the CRLB can be minimized. Optimality according to this criterion

is also known as E-optimality, where the minimum diameter of the FIM is max-

imized [23, 28]. When variances vary significantly, the confidence ellipsoid can

have very different diameters along different dimensions; hence, the log-volume

minimization approach in the D-optimal design can be misleading [23,28].

The optimal power allocation strategy that minimizes the maximum eigenvalue

of the CRLB corresponds to maximizing the minimum eigenvalue of the FIM.

Hence, the following problem can be considered:

max
{pi}ki=1

λmin{I(X;θ)}

s.t.
k∑
i=1

pi ≤ PΣ

pi ≥ 0, i = 1, . . . , k

(3.24)

From (2.4) and (3.4), I(X;θ) in (3.24) can be expressed as I(X;θ) = PJP, where

J is positive semi-definite and P is diagonal (see (2.2)). It can be shown that the

eigenvalues of PJP are the same as those of P2J based on their characteristic

equations. However in general, there is not a closed-form relationship between

the eigenvalues of P2 and J and the eigenvalues of their product. Therefore, it

is challenging to obtain a closed-form solution to (3.24). One way to solve (3.24)

is to apply global optimization tools such as particle swarm optimization (PSO)

or the multistart algorithm [31]. This approach is adopted in Section 5 to obtain

the solution of (3.24).

To perform further investigations on the problem in (3.24), we can derive a

bound on the objective function in (3.24). To that aim, the following lemma can

be utilized to provide bounds for the eigenvalues of the FIM, I(X;θ).
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Let ,∈ Rn×n, T =, T =, rank() = rank() = n and =. Let {νi}ni=1, {µi}ni=1 and

{γi}ni=1 denote, respectively, the eigenvalues of , and increasing in the absolute

value. Then,

|ν1||µ1| ≤ |γ1| ≤ · · · ≤ |γn| ≤ |νn||µn| (3.25)

For the Euclidean matrix norm, it is known that ‖‖≤ ‖‖‖‖. In addition, the

norm of a symmetric matrix is equal to its spectral radius, i.e., ‖‖= maxj |νj|
and ‖‖= maxj |µj|. Therefore, ‖‖= ‖‖≤ ‖‖‖‖= |νn||µn|. Since is the product of

two symmetric matrices, it is also symmetric. Therefore, ‖‖= |γn|. Hence, the

upper bound on the absolute value of the maximum eigenvalue of is obtained

as |γn| ≤ |νn||µn|. Since rank() = rank() = n, the lower bound can be derived

via inversion; that is, −1 =−1 −1. Therefore, ‖−1‖= ‖−1−1‖≤ 1
|ν1||µ1| . Through the

same reasoning, ‖−1‖= 1
|γ1| . Hence, the relation of 1

|γ1| ≤
1

|ν1||µ1| is obtained, which

yields the lower bound in (3.25).

Lemma 1 can be used to derive a lower bound on the objective function in

(3.24) as follows:

λmin{I(X;θ)} = λmin{P2J} ≥ λmin{J} min
i∈{1,...,k}

pi (3.26)

where λmin{J} denotes the minimum eigenvalue of J. In (3.26), the absolute

value operators in (3.25) are not used since all the eigenvalues are non-negative

and the eigenvalues of P2 are taken as {p1, . . . , pk} based on (2.2).

Instead of maximizing the minimum eigenvalue of I(X;θ) in (3.24), consider

the maximization of the lower bound on it. As noted from (3.26), the lower bound

on the minimum eigenvalue of I(X;θ) depends on the minimum power allocated

to an individual parameter. Therefore, instead of (3.24), we get the following

convex optimization problem:

max
{pi}ki=1

min
j∈{1,...,k}

pj

s.t.
k∑
i=1

pi ≤ PΣ

pi ≥ 0, i = 1, . . . , k

(3.27)
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The Lagrangian for (3.27) can be expressed as

L
(
{pi}ki=1, {υi}k+1

i=1

)
= − min

j∈{1,...,k}
pj + υ1

(
k∑
i=1

pi − PΣ

)
−

k∑
i=1

υi+1pi (3.28)

Accordingly, the KKT conditions are again the same as those in Section 3.1 except

that the stationarity condition becomes

∂L
∂pi

∣∣∣∣
pi=p∗i

= −I{pi≤pj ,∀j 6=i} + υ∗1 − υ∗i+1 = 0 (3.29)

for i = 1, . . . , k, where I denotes the indicator function, which is equal one if

the condition is satisfied and zero otherwise. From the complementary slackness

condition in (3.8) and the stationarity condition in (3.29), it is concluded that

υ∗1 > 0 and
∑k

i=1 p
∗
i = PΣ must hold. (Otherwise, I{pi≤pj ,∀j 6=i} = 0 for all i =

1, . . . , k, which is impossible.) In addition, the fact that υ∗1 > 0 together with the

conditions in (3.9) and (3.29) imply that υ∗i+1 = 0 for i = 1, . . . , k. Hence, (3.29)

reduces to

I{pi≤pj ,∀j 6=i} = υ∗1, i = 1, . . . , k (3.30)

The only possibility to satisfy the k equations in (3.30) is to have p∗1 = p∗2 =

· · · = p∗k. Therefore,
∑k

i=1 p
∗
i = PΣ implies that p∗i = PΣ/k for i = 1, . . . , k;

that is, the optimal power allocation strategy to maximize (minimize) the lower

(upper) bound on the minimum (maximum) eigenvalue of the FIM (CRLB) is the

equal power allocation strategy. Consequently, the lower bound on the minimum

eigenvalue of I(X;θ) becomes λmin{J}PΣ/k.

Remark 1: The preceding analysis indicates that the equal power allocation strat-

egy solves the problem of maximizing a lower bound on the objective function in

(3.24). Hence, it does not necessarily yield the optimal power allocation strategy.

(The numerical example in Section 5.3 illustrates this fact.)
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3.4 Worst-Case Coordinate Error Variance Cri-

terion

As an alternative measure of robustness, one can consider the worst-case coordi-

nate error variance, which is bounded by the largest diagonal entry of the CRLB;

i.e., maxj∈{1,...,K} [I−1(X;θ)]j,j. This criterion is referred as G-optimality [7, 23],

and it has the effect of reducing the worst-case error variance as well.

From (3.5), the jth diagonal entry of the CRLB can be expressed as

[I−1(X;θ)]j,j =
ajj
pj

(3.31)

Therefore, the problem of minimizing the maximum diagonal entry of the CRLB

can be formulated as
min
{pi}ki=1

max
j∈{1,...,k}

ajj
pj

s.t.
k∑
i=1

pi ≤ PΣ

pi ≥ 0, i = 1, . . . , k

(3.32)

The problem in (3.32) is a convex optimization problem, it can be shown that

the solution of (3.32) satisfies
∑k

i=1 p
∗
i = PΣ and

aii
p∗i

= α, ∀i ∈ {1, . . . , k} (3.33)

where α is a constant (i.e., an equalizer solution [32]). Then, parameter α in

(3.33) obtained from
k∑
i=1

p∗i =
1

α

k∑
i=1

aii = PΣ (3.34)

which yields

α =
tr{A}
PΣ

· (3.35)

Hence, the optimal power allocation strategy is given by

p∗i =
PΣ aii
tr{A}

, i = 1, . . . , k (3.36)

When the optimal power allocation strategy is employed, the diagonal entries of

the CRLB are the same, and the worst-case coordinate error variance becomes

α = tr{A}/PΣ.
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3.5 Average Fisher Information Criterion

When the aim is to estimate a vector of parameters, the average Fisher infor-

mation indicates the overall usefulness of the observation vector to estimate the

parameter vector. The informativeness of the observation vector to estimate the

ith parameter corresponds to the ith diagonal entry of the FIM. Therefore, the

average Fisher information is related to the trace of the FIM. Accordingly, the op-

timal power allocation problem for maximizing the trace of the FIM is formulated

as follows:
max
{pi}ki=1

tr{I(X;θ)}

s.t.
k∑
i=1

pi ≤ PΣ

pi ≥ 0, i = 1, . . . , k

(3.37)

From (2.4) and (3.4), the objective function in (3.37) can be rewritten in terms

of the known matrices as

tr{I(X;θ)} = tr{PJP} =
k∑
i=1

pi jii (3.38)

where jii , [J]i,i. Based on (3.38), the problem in (3.37) can be converted to a

linear program (LP) by defining

p , diag(PPT ) = [p1 . . . pk]
T (3.39)

j , diag(J) = [j11 . . . jkk]
T , (3.40)

and expressing (3.37) as

max
p

jTp

s.t. 1Tp ≤ PΣ

p ≥ 0

(3.41)

The solution of (3.41) is provided in the following proposition.

Let i∗ denote the index of the maximum element of j in (3.40); i.e., i∗ =

arg maxl∈{1,...,k} jll. Then, the optimal power allocation strategy that maximizes
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the average Fisher information under the sum-power constraint is given by p∗ =

[p∗1 · · · p∗k]T , where

p∗i =

PΣ, i = i∗

0, otherwise
(3.42)

for i = 1, . . . , k. (In case of multiple maxima, the indices of any non-empty

subset can be selected.) Although optimization problems in the form of (3.41)

have been solved in various contexts [22, 33, 34], a proof is provided below for

completeness.

Consider any feasible power allocation strategy represented by p = [p1 · · · pk]T ,

which achieves the objective value of

jTp =
k∑
i=1

jiipi (3.43)

Suppose that this strategy is changed by using a modification vector ∆ =

[δ1 · · · δk]T with the following properties:

δi =

−
∑

l 6=i δl, i = i∗

a nonpositive real number, otherwise

−δi ≤ pi, ∀i 6= i∗

(3.44)

where i∗ = arg maxl∈{1,...,k} jll. Accordingly, the following new strategy is ob-

tained:

p̃ =



p1 + δ1

p2 + δ2

...

pi∗ −
∑

l 6=i∗ δl
...

pk + δk


(3.45)

It can be seen that
∑k

i=1 p̃i =
∑k

i=1 pi and p̃i ≥ 0 for i = 1, . . . , k. Hence, the

new strategy is also feasible. (Essentially, the new strategy accumulates some of

the power distributed among indices into a single index.) The improvement in

the objective function of (3.41) achieved by the new strategy can be calculated
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as follows:

jT (p̃− p) =
∑
i 6=i∗

jiiδi − ji∗i∗
∑
i 6=i∗

δi (3.46)

= −
∑
i 6=i∗

(ji∗i∗ − jii)δi ≥ 0 (3.47)

where the inequality is obtained due to the facts that δi’s are nonpositive and ji∗i∗

is the maximum element of j. The maximum improvement is obtained if and only

if δi = −pi, ∀i 6= i∗. Then, the optimal strategy becomes p∗i = 0, ∀i 6= i∗, and

p∗i =
∑k

l=1 p
∗
l for i = i∗ (see (3.45)). Moreover, it is straightforward to show that∑k

l=1 p
∗
l = PΣ must hold via similar arguments to those in the previous sections.

Therefore, p∗i = PΣ for i = i∗. That is, the optimal power allocation strategy is

to allocate all available power to the parameter corresponding to the maximum

element of j.

Proposition 1 states that in order to maximize the average FI, the whole power

must be allocated to the parameter corresponding to the maximum diagonal entry

of J. When the optimal power adaptation strategy is used, the average Fisher

information achieves a maximum value of PΣ maxi jii.
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3.6 Worst-Case Coordinate Fisher Information

Criterion

Depending on the system properties, the observation vector can be more informa-

tive about some parameters and less informative about the others. Consequently,

the estimation performance of individual parameters can vary to some extent.

Such variations can be undesirable as certain performance requirements should

be satisfied for estimation of all parameters. To alleviate this effect, one approach

is to maximize the minimum Fisher information contained the observation vector

w.r.t. individual parameters. Such an optimization increases the robustness of

estimation against accuracy variations.

The minimum Fisher information contained in the observation vector w.r.t.

individual parameters is called the worst-case coordinate FI, which corresponds

to the minimum diagonal entry of the FIM, that is, mini∈{1,...,k} [I(X;θ)]i,i. Based

on this objective function, the following maximization problem is defined under

the sum-power constraint:

max
{pi}ki=1

min
i∈{1,...,k}

[I(X;θ)]i,i

s.t.
k∑
i=1

pi ≤ PΣ

pi ≥ 0, i = 1, . . . , k

(3.48)

Based on (3.38), the objective function in (3.48) can be written as

min
i

[I(X;θ)]i,i = min
i
pi jii (3.49)

Then, (3.48) is observed to have a very similar form to the problem in (3.27).

Hence, the same steps can be followed and it can be shown that the solution of

(3.48) satisfies
∑k

i=1 p
∗
i = PΣ and

p∗i jii = α̃, ∀i ∈ {1, . . . , k} (3.50)

where α̃ is a constant that is specified by

k∑
i=1

p∗i =
k∑
i=1

α̃

jii
= PΣ (3.51)
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From (3.51), α̃ is obtained as

α̃ =
PΣ∑k
i=1

1
jii

. (3.52)

Therefore, the optimal power allocation strategy becomes

p∗i =
PΣ

jii
∑k

l=1
1
jll

, i = 1, . . . , k (3.53)

When the optimal power allocation strategy is used, the worst case Fisher infor-

mation achieves a maximum value of PΣ

/∑k
l=1

1
jll

. It is noted that the optimal

power allocation strategy in (3.53) equalizes the Fisher information contained in

X w.r.t. the ith element of θ for all i ∈ {1, . . . , k}; that is, p∗i jii = PΣ

/∑k
l=1

1
jll

for all i ∈ {1, . . . , k}.
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Chapter 4

Extensions

4.1 Presence of Nuisance Parameters

In some vector parameter estimation scenarios, only a subset of parameters can

be of interest for estimation purposes. Let only r out of the k parameters be

relevant and the remaining k− r parameters be nuisance parameters. We assume

that the nuisance parameters must be transmitted with unit power and power

adaptation is not available for them. Without loss of generality, we can arrange

the vector of parameters to be transmitted as

θ =

[
θγ

θσ

]
(4.1)

where θγ ∈ Rr denotes the vector of relevant parameters, and θσ ∈ Rk−r rep-

resents the vector of nuisance parameters. Then, the power allocation matrix

becomes

P =

[
Pγ 0

0 Ik−r

]
(4.2)

where Ik−r denotes the (k− r)× (k− r) identity matrix. Under the same system

model, matrix J defined in (3.4) can be expressed as

J =

[
Jγ B

BT Jσ

]
(4.3)
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where Jγ ∈ Rr×r and Jσ ∈ R(k−r)×(k−r) are the components of J corresponding to

the parameters of interest and the nuisance parameters, respectively, and matrix

B ∈ Rr×(k−r) and its transpose are the cross-terms. Similarly, matrix A in (3.4),

i.e., A , J−1, can also be arranged as

A =

[
Aγ C

CT Aσ

]
(4.4)

where C ∈ Rr×(k−r) and its transpose are the cross-terms. Based on (4.2), (4.3),

and (4.4), the FIM and the CRLB can be expressed as

I(X;θ) = PJP =

[
PγJγPγ PγB

BTPγ Jσ

]
(4.5)

I−1(X;θ) = P−1AP−1 =

[
P−1γ AγP

−1
γ P−1γ C

CTP−1γ Aσ

]
(4.6)

The related terms of the FIM and the CRLB are the ones involving only the

parameters of interest. In this setting, only the first r rows and the first r columns

are taken into account; that is,

Iγ(X;θ) = PγJγPγ (4.7)

I−1
γ (X;θ) = P−1

γ AγP
−1
γ (4.8)

where Aγ = (Jγ − BJ−1
σ BT )−1 [35]. As seen from above, the power allocation

strategies developed in Section 3 (which are developed in the absence of nuisance

parameters) can also be used in this case.
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4.2 Extension to Nonlinear Model

In some practical applications, the linear system model in (2.1) may not be valid,

and the parameter vector, after power adaptation, can be processed by a nonlinear

transformation f(·) as follows:

X = f(Pθ) + N (4.9)

In this case, the FIM w.r.t. parameter θ can be expressed in the same form as

(2.4) after replacing F with the Jacobian of the vector valued function f(·) [30,

Lemma 4]. More explicitly, let φ , Pθ in (4.9), and the Jacobian of f(φ) w.r.t.

its argument φ is given as

F ,


∂f1
∂φ1

∂f2
∂φ1

. . . ∂fn
∂φ1

∂f1
∂φ2

∂f2
∂φ2

. . . ∂fn
∂φ2

...
...

. . .
...

∂f1
∂φk

∂f2
∂φk

. . . ∂fn
∂φk

 (4.10)

If f(·) is continuously differentiable w.r.t. φ and F in (4.10) does not depend on

pi’s for i = 1, . . . , k, F in (4.10) can be substituted into (2.4), and the developed

techniques can be employed without further modification for power adaptation

in the presence of a nonlinear system model, as well. If F depends on pi’s, (4.10)

is still valid; however, the objective functions should be modified accordingly,

leading to possibly nonconvex optimization problems. In that case, numerical

methods can be employed. On the other hand, if f(·) is not continuously dif-

ferentiable w.r.t. φ, further analysis is required and new techniques should be

developed.
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Chapter 5

Numerical Results

In this section, we provide numerical examples for the optimal power allocation

strategies in Section 3. In all cases, the equal power allocation strategy is also

implemented for comparison purposes. The noise is modeled as a zero-mean

Gaussian random vector with independent components; that is, N ∼ N (0,Σ),

where Σ = Diag(σ2
1, . . . , σ

2
n). For this noise model, the FIM of N in (2.5) is

obtained as

I(N) = Σ−1 = Diag
(
1/σ2

1, . . . , 1/σ
2
n

)
(5.1)

In the simulations, σ2
i ’s are set to σ2

i = 10−7+3(i−1)/(n−1) for i = 1, . . . , n. The di-

mension of the parameter vector, k, is varied between 2 and 30, and the dimension

of the observation vector, n, is taken to be equal to the number of parameters,

i.e., k = n. Also, for matrix F in (2.1), two different scenarios are considered. In

the first scenario, F = F1, where F1 is the k × k identity matrix (k = n), that

is, F1 = Ik×k. In this scenario, we can observe the effects of power adaptation on

the estimation performance when the main source of error is additive noise. In

the second scenario, F = F2, which is specified as

F2 = Ik×k + κVT (5.2)
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with

κ =
‖Ik×k‖F

‖V‖F

V =



1 1 1 . . . 1

1 1 + ε (1 + ε)2 . . . (1 + ε)k−1

1 1 + 2ε (1 + 2ε)2 . . . (1 + 2ε)k−1

...
...

...
...

1 1.5 1.52 . . . 1.5k−1


ε =

0.5

k − 1

(5.3)

That is, F2 is the sum of the k × k identity matrix and the transpose of a

normalized k × k Vandermonde matrix, where the normalization factor κ makes

sure that the Frobenius norms of the added matrices are equal. In this scenario,

the entries of the system matrix F differ from each other significantly, which

implies that the system affects the individual parameters differently.

In the following, the optimal power allocation strategies are obtained according

to the Fisher information based criteria in Section 3 for the considered simulation

setup, and the performance metrics are plotted against the dimension of the

parameter vector, k, under a unit sum-power constraint, that is, PΣ = 0 dB.
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5.1 Results for Average MSE Criterion

In this case, the problem in (3.3) is considered, and the CRLBs achieved by the

optimal power allocation strategy in (3.15) and by the equal power allocation

strategy (i.e., p∗i = PΣ/k, i = 1, . . . , k) are plotted versus k in Fig. 5.1. It is

noted that as the dimension of the parameter vector increases, the CRLB on the

average MSE increases for both optimal and equal power allocation strategies

except for the slight initial decrease in the optimal strategy for F = F1. It is also

observed that the optimal power allocation strategy consistently outperforms the

equal power allocation strategy for both system matrices. As an example, for

F = F2, the CRLB is around 10−4 when k = n = 7 for the equal power allocation

strategy, and the same level of CRLB is attained when k = n = 14 for the optimal

power allocation strategy. Hence, significant improvements can be achieved by

the optimal power allocation strategy.
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10
-4

Figure 5.1: CRLB on the average MSE versus k for the equal and optimal power
allocation strategies.

5.2 Results for Shannon Information Criterion

For this criterion, the problem in (3.17) (equivalently, (3.19)) is considered, which

leads to the solution in (3.22). That is, the optimal and equal power allocation

strategies yield the same solution in this case. The Shannon information achieved

by the optimal (equal) power allocation strategy is plotted versus k in Fig. 5.2.

It is observed that the Shannon information increases as the dimension of the

parameter vector, k, increases. The increase in Shannon information is linear for

both system matrices, and the achieved Shannon information scores are nearly the

same for F = F1 and F = F2. This means that increased Shannon information

can be achieved while estimating more parameters instead of fewer parameters

when the number of observations is equal to the number of parameters.
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Figure 5.2: Shannon information versus k for the optimal (equal) power allocation
strategy.

5.3 Results for Worst-Case Error Variance Cri-

terion

In this case, the problem in (3.24) and the alternative problem in (3.27) are solved.

The solution of (3.24) is obtained via the multistart global optimization algorithm

in MATLAB. On the other hand, the equal power allocation strategy is the

solution of (3.27), as shown in Section 3.3. In Fig. 5.3, the maximum eigenvalues

of the CRLBs achieved by the optimal and equal power allocation strategies

are plotted versus k. It can be seen in Fig. 5.3 that the optimal power allocation

strategy can significantly outperform the equal power allocation strategy, and the

difference between the two power allocation strategies increases as the number of

parameters increases. One implication of this result is that power adaptation can
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get more effective when there exist more parameters to estimate. In addition, it

is noted that maximizing the lower bound on the eigenvalues of the CRLB is not

sufficient to obtain the optimal power allocation strategy, as stated in Remark 1.

5 10 15 20 25 30

10
-4

10
-3

Figure 5.3: Maximum eigenvalue of the CRLB (inverse FIM) versus k for the
optimal and equal power allocation strategies.
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5.4 Results for Worst-Case Coordinate Error

Variance Criterion

For this criterion, the problem in (3.32) is considered, which leads to the optimal

solution in (3.36). The largest diagonal entry of the CRLB is plotted versus k

for both the optimal solution and the equal power allocation strategy in Fig. 5.4.

It is noted that the trend is similar to that in Fig. 5.3. Namely, the benefits

of optimal power adaptation are observed for the worst-case coordinate error

variance criterion, as well.

5 10 15 20 25 30

10
-4

10
-3

Figure 5.4: The largest diagonal entry of the CRLB (worst-case coordinate
CRLB) versus k for the optimal and equal power allocation strategies.
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5.5 Results for Average Fisher Information Cri-

terion

In this case, we focus on the problem in (3.37), the solution of which is provided

by (3.42) in Proposition 1. The impact of the dimension of the parameter vector,

k, on the average Fisher information is shown in Fig. 5.5 for both the optimal

solution in (3.42) and the equal power allocation strategy. It is observed that the

average Fisher information rapidly decreases when k ≤ 10 for both the optimal

and equal power allocation strategies. However for k > 10, power adaptation

significantly mitigates the adverse effects of the increased parameter dimension.

While the optimal power allocation strategy is superior to the equal power allo-

cation for all values of k, significant enhancements are observed for large values

of k.
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Figure 5.5: Average Fisher information versus k for the optimal and equal power
allocation strategies.
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5.6 Results for Worst Case Coordinate Fisher

Information

In this scenario, the minimum diagonal entry of the FIM is maximized as in

(3.48), leading to the optimal power allocation strategy in (3.53). The minimum

diagonal entry of the FIM is plotted versus k for both the optimal and equal

power allocation strategies in Fig. 5.6. When F = F2, the worst-case coordinate

Fisher information rapidly decreases for small k, while the trend is more steady

when F = F1. The decrease in worst-case Fisher information slows down for

large values of k. Overall, the impact of power adaptation can be observed more

clearly when k is large.
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Figure 5.6: The minimum diagonal entry of the FIM (worst-case coordinate Fisher
information) versus k for the optimal and equal power allocation strategies.
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It is noted from the simulation results that when the dimensions of the param-

eter and observation vectors are large, power adaptation becomes more critical

and the optimal power allocation strategies can provide more significant improve-

ments over the equal power allocation strategy. In addition, the trends show that

power adaptation can mitigate the adverse effects of increases in the dimension

of the parameter vector when the observation vector has the same dimension as

the parameter vector.
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Chapter 6

Conclusion and Future Work

The optimal power allocation problem has been investigated for vector parameter

estimation in the absence of prior information according to various Fisher infor-

mation based optimality criteria. After deriving the FIM for a generic observa-

tion model, six different optimal power allocation problems have been formulated.

Then, some closed-form solutions have been provided based on optimization theo-

retic approaches. It has been shown that the proposed power allocation strategies

are also valid for nonlinear system models under certain conditions and in the

presence of nuisance parameters. Numerical examples have shown that the use

of the optimal power allocation strategies can provide significant improvements

in estimation performance over the equal power allocation strategy.

One of the possible extensions to the investigated problems is to derive closed-

form solutions to the problems with non-linear models. The fundamentals for

this extension are discussed in Chapter 4. In addition, optimizing a precoding

matrix that is not necessarily diagonal or square instead of a diagonal power al-

location matrix is also a possible extension. Solving such a problem, however,

would be more challenging due to the contributions of the off-diagonal entries.

Lastly, introduction of secrecy constraints for the optimal secure transmission of

parameters would be an interesting extension. In this case, however, the secrecy

constraints can be non-convex; therefore, KKT conditions are no longer sufficient
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for optimality. Hence, algorithmic approaches in conjunction with KKT-based

characterization can lead to the solution of such a problem. Another possible

extension is to consider a physically relevant nonlinear model. If the nonlinear

function is continuously differentiable and the Jacobian of the nonlinear function

does not depend on pi’s for i = 1, . . . , k, then the proposed techniques would be

applicable. On the other hand, the case where the nonlinear function is not differ-

entiable w.r.t. its argument or a system involving a power parameter dependent

nonlinear transformation still remain as an open problem.
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