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Abstract

In the sixth generation of wireless communication systems (6G), there
exist multiple candidate enabling technologies that help the wireless network
satisfy the ever-increasing demand for speed, coverage, reliability, and mo-
bility. Among these technologies, reconfigurable intelligent surfaces (RISs)
extend the coverage of a wireless network into dead zones, increase capac-
ity, and facilitate integrated sensing and communications (ISAC) tasks by
consuming very low power, thus contributing to energy efficiency as well.

RISs are meta-material-based devices whose electromagnetic reflection
characteristics can be controlled externally to cater to the needs of the com-
munication links. Most ubiquitously, this comes in the form of adding a
desired phase shift to an incident wave before reflecting it, which can be used
to phase-align multiple incident waves to increase the strength of the signal
at the receiver and provide coverage to an area that otherwise would be a
dead zone.

While this portrays an image of a dream technology that would boost the
existing wireless networks significantly, RISs do not come without engineering
problems. First of all, the individual elements do not exhibit ideal reflection
characteristics, that is, they attenuate the incident signal in a fashion de-
pending on the configured phase shift. This creates the phenomenon called
”phase-dependent amplitude”. Another problem caused by RISs is the chan-
nel estimation overhead. In a multiple-antenna communication system, the
channel between two terminals is as complex as the product of the number
of antennas at each end. However, when an RIS comes into the equation, the
cascade of the transmitter-RIS and RIS-receiver channels has a complexity
further multiplied by the number of RIS elements. Consequently, the channel
estimation process to utilize the RIS effectively becomes more demanding,
that is, more pilot signals are required to estimate the channel for coherent
reception. This adversely affects the effective data rate within a communi-
cation system since more resources need to be spent for pilot transmission
and fewer resources can be allocated for data transmission. While there ex-
ists some work on reducing the channel dimensions by exploiting the channel
structure, this problem persists for unstructured channels. In addition, for
the wireless networks using multiple RISs, a new kind of pilot contamination
arises, which is the main topic of this thesis.

In the first part of this thesis, we study this new kind of pilot contami-
nation in a multi-operator context, where two operators provide services to
their respective served users and share a single site. Each operator has a single
dedicated RIS and they use disjoint frequency bands, but each RIS inadver-
tently reflects the transmitted uplink signals of the user equipment devices
in multiple bands. Consequently, the concurrent reflection of pilot signals
during the channel estimation phase introduces a new inter-operator pilot
contamination effect. We investigate the implications of this effect in systems
with either deterministic or correlated Rayleigh fading channels, specifically
focusing on its impact on channel estimation quality, signal equalization, and
channel capacity. The numerical results demonstrate the substantial degra-
dation in system performance caused by this phenomenon and highlight the
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pressing need to address inter-operator pilot contamination in multi-operator
RIS deployments. To combat the negative effect of this new type of pilot
contamination, we propose to use orthogonal RIS configurations during up-
link pilot transmission, which can mitigate or eliminate the negative effect
of inter-operator pilot contamination at the expense of some inter-operator
information exchange and orchestration.

In the second part of this thesis, we revisit the inter-operator pilot con-
tamination. This time, however, we investigate the use of multiple antennas
at the base stations to eliminate inter-operator pilot contamination. While
orthogonalizing the RIS configurations as in the single antenna case eliminates
pilot contamination, it doubles the number of pilots required to perform chan-
nel estimation. Considering the extant pilot overhead problem in RIS-aided
communication systems, an alternative approach that does not increase the
number of pilots to be transmitted is necessary. To this end, we propose
using receive beamforming and null forming to eliminate inter-operator pilot
contamination. We show that it is possible to eliminate inter-operator pi-
lot contamination by placing nulls toward the signal coming from the other
operator’s RIS.

In the third part of this thesis, we consider a single-operator-two-RIS
ISAC system where the single user is both a communication terminal and a
positioning target. Based on the uplink positioning pilots, the base station
aims to estimate both the communication channel and the user’s position
within the indoor environment by estimating the angle of arrival (AoA) of
the impinging signals on both RISs and then exploiting the system and array
geometries to estimate the user position and user channels respectively. Al-
though there is a single operator, due to the presence of multiple RISs, pilot
contamination occurs through the same physical means as multi-operator pilot
contamination unless the channel estimation process is parameterized. Since
the communication links are considered to be pure line-of-sight (LOS), their
structure allows the reduction of the number of unknown parameters. Con-
sequently, the reduction of information caused by pilot contamination does
not affect the channel estimation procedure, hence the pilot contamination is
overcome. In addition, the position of the user is determined by intersecting
the lines drawn along the AoA estimates. We adopt the Cramér-Rao Lower
Bound (CRLB), the lower bound on the mean squared error (MSE) of any
unbiased estimator, for both channel estimation and positioning. Our numer-
ical results show that it is possible to utilize positioning pilots for parametric
channel estimation when the wireless links are LOS.

The fourth part of the thesis ventures into the domain of near-field com-
munications. Here, we consider the estimation of parametric channels in the
uplink of a multi-user multiple-input-multiple-output (MU-MIMO) commu-
nication system where the users are located within the radiative near field
(Fresnel region) of the base station’s aperture antenna. In this setup, we
consider near-field channel models characterized by the users’ distances and
azimuth angles relative to the aperture array. We derive the CRLB to es-
timate these location parameters and the parametric channel estimates in
closed form. Moreover, we consider using the 2D-MUSIC algorithm to esti-
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mate these parameters and compare the performance of the 2D-MUSIC algo-
rithm with the CRLB. Our results indicate that the 2D-MUSIC algorithm is
asymptotically consistent and efficient.

Keywords: Reconfigurable intelligent surface, channel estimation, pilot con-
tamination, positioning, angle of arrival estimation, integrated sensing and com-
munications, receive beamforming, radiative near field.
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Sammanfattning

I den sjätte generationen av tr̊adlösa kommunikationssystem (6G) finns
flera potentiella tekniker som gör det möjligt för det tr̊adlösa nätverket att
uppfylla de ständigt ökande kraven p̊a hastighet, täckning, tillförlitlighet och
rörlighet. Bland dessa tekniker återfinns de s̊a kallade omkonfigurerbara in-
telligenta ytor (reconfigurable intelligent surface - RIS p̊a Engelska), vilka
kan förlänga ett nätverks täckning till omr̊aden utan signal (s̊a kallade ”dead
zones”), öka kapaciteten och underlätta integrerade sensor- och kommunika-
tionslösningar (ISAC). Samtidigt förbrukar RIS mycket lite energi och bidrar
därmed till ökad energieffektivitet.

RIS är en metaytebaserad teknologi där ytan kan styras externt för att ju-
stera hur inkommande elektromagnetiska v̊agor reflekteras. Vanligtvis innebär
detta att varje element p̊a ytan åstadkommer en önskad fasförskjutning av den
inkommande signalen innan den reflekteras, vilket kan utnyttjas för att fassju-
stera flera inkommande v̊agor och därmed förstärka signalen vid mottagaren.
P̊a s̊a sätt kan täckning ges till annars otillgängliga omr̊aden.

Trots att denna teknik lovar betydande förbättringar för dagens tr̊adlösa
nätverk medför RIS även nya ingenjörsmässiga utmaningar. För det första
uppvisar de enskilda elementen inte perfekta reflektionskarakteristiker, utan
dämpar signalen p̊a ett sätt som beror p̊a den inställda fasförskjutningen, ett
fenomen som kallas fasberoende amplitud. För det andra uppst̊ar extra over-
head inom kanalskattningen. I ett flerantennsystem är kanalens komplexitet
mellan tv̊a noder redan omfattande, men när en RIS läggs till multipliceras
komplexiteten med antalet RIS-element. Följaktligen krävs fler pilotsignaler
för att skatta kanalen i system som använder RIS, vilket minskar den effektiva
datahastigheten eftersom fler resursblock g̊ar åt till pilotsändning. Även om
det finns metoder för att reducera kanalens dimensioner genom att utnyttja
kanalstruktur, kvarst̊ar problemet för kanaler utan särskild struktur. Därtill
uppst̊ar en ny typ av pilotförorening (pilot contamination) i scenarier med
flera RIS:ar eller flera operatörer, vilket är huvudtemat i denna avhandling.

I avhandlingens första del studeras denna nya typ av pilotförorening i ett
multioperatörsscenario, där tv̊a operatörer delar samma plats men använder
olika frekvensband och har varsin dedikerad RIS. Även om frekvensbanden är
åtskilda reflekterar varje RIS oavsiktligt de upplänksignaler som skickas av
användare i b̊ada banden. Under kanalskattningsfasen leder denna samtidi-
ga reflektion av pilotsignaler till interoperatörs-pilotförorening. Vi analyserar
hur fenomenet p̊averkar system med b̊ade deterministiska och korrelerade
Rayleigh-fadande kanaler, med fokus p̊a kanaluppskattning, signalequalise-
ring och kapacitet. Numeriska resultat visar en tydlig prestationsförsämring
och understryker att interoperatörs-pilotförorening är ett allvarligt problem
i multioperatörssystem med RIS. För att motverka denna effekt föresl̊ar vi
att använda ortogonala RIS-konfigurationer under upplänkens pilotfas. Detta
kan mildra eller helt eliminera pilotföroreningen, men kräver samordning och
viss informationsdelning mellan operatörerna.

I avhandlingens andra del studeras samma interoperatörs-pilotförorening
men i ett scenario där basstationerna har flera antenner. Att ortogonalisera
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RIS-konfigurationerna, som i fallet med en enda antenn, eliminerar visser-
ligen pilotföroreningen, men fördubblar samtidigt antalet nödvändiga pilot-
signaler. Mot bakgrund av den redan existerande pilotsignalsproblematiken
i RIS-baserade system behövs en annan lösning som inte ökar pilotbehovet.
Därför undersöks här hur mottagarstr̊alformning och nollställning (null for-
ming) kan användas för att eliminera pilotföroreningen. Vi visar att det är
möjligt att undertrycka den oönskade signalen fr̊an den andra operatörens
RIS genom att placera nulls mot den, och därmed undvika pilotförorening
utan att öka antalet pilotsignaler.

I avhandlingens tredje del betraktas ett enoperatörssystem med tv̊a RIS:ar
i en integrerad sensor- och kommunikationsmiljö (ISAC), där en enda användare
fungerar b̊ade som kommunikationsenhet och positioneringsm̊al. Baserat p̊a
upplänkens positioneringspiloter försöker basstationen uppskatta b̊ade kom-
munikationskanalen och användarens position inomhus. Detta görs genom att
först skatta infallsvinklar (AoA) p̊a signalerna som träffar de tv̊a RIS:arna
och därefter, med hjälp av system- och antenngeometrier, beräkna användar-
positionen samt motsvarande kanaler. Trots att detta inte är ett multiope-
ratörsscenario kan pilotförorening uppst̊a av samma fysiska skäl när flera
RIS:ar används, s̊avida kanaluppskattningen inte parameteriseras. Eftersom
kommunikationslänkarna här antas vara rena siktlänkar (LOS) kan man dock
utnyttja kanalstrukturen för att minska antalet okända parametrar. Detta gör
att informationsförlusten orsakad av pilotförorening inte p̊averkar kanalupp-
skattningen, och pilotföroreningen kan därmed överbryggas. Vidare bestäms
användarens position genom att skära de räta linjerna som definieras av
AoA-estimaten. Vi använder Cramér-Raos lägsta gräns (CRLB) som pre-
standam̊att för den lägsta möjliga medelkvadratfelet (MSE) för en skattning
av b̊ade kanal och position. Numeriska resultat visar att det är fullt möjligt
att utnyttja positioneringspiloter för parameterbaserad kanaluppskattning i
LOS-scenarier.

I avhandlingens fjärde del förflyttar vi oss till närfältskommunikation,
där användarna befinner sig i den s.k. Fresnelzonen relativt basstationens
antennapertur. Vi analyserar ett uplänkscenario i ett fleranvändarsystem med
flera antenner (MU-MIMO) och antar att kanalmodellen är närfältsbaserad
och beror p̊a användarnas avst̊and och azimutvinkel relativt antennaperturen.
Vi härleder CRLB för att i slutet uppskatta s̊aväl positioneringsparametrar
(avst̊and och vinkel) som de parameteriserade kommunikationskanalerna i
slutet form. Dessutom undersöker vi hur 2D-MUSIC-algoritmen kan användas
för att skatta dessa parametrar, och vi jämför dess prestanda med CRLB.
Resultaten visar att 2D-MUSIC är b̊ade asymptotiskt konsistent och effektiv
för denna typ av närfältsbaserad kanaluppskattning.

Nyckelord: Omkonfigurerbar intelligent yta, kanaluppskattning, pilotkonta-
minering, positionering, uppskattning av ankomstvinkel, integrerad sensorik och
kommunikation, mottagarens str̊alforming, str̊alande närfält.
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Doğa Gürgünoğlu, Emil Björnson, Gábor Fodor
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Emre Öztürk, Mustafa Bay, Bilge Selin Emre, Elif Nur Güngör, Ecem Karabay,
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Chapter 1

Introduction

Wireless communication is one of the key enablers of the modern world we live
in. By facilitating the circulation of knowledge, it has enabled the globalization
of our world. In the blink of an eye, it is possible to call a friend on the other
side of the world, hear news from thousands of kilometers away, and access the
most recent scientific articles on a browser. It is the technology that accelerates
other technologies, it is the technology that made it possible to stay connected
even when the world was in lockdown. It let the industry continue advancing
throughout the pandemic, and it let lovers miles apart see and talk with each
other, although through a phone or computer screen.

While the concept of wireless communication unites all technologies that use
electromagnetic waves to carry information from one place to another, its sub-
categories are quite diverse. For example, both Digital Mobile Radio (DMR) and
Bluetooth systems use electromagnetic waves to carry information and very sim-
ilar dynamics apply to signal blockage, propagation, reflection, and penetration
loss. On the other hand, their internal design and their ways of representing infor-
mation in the form of signals are quite different. A mobile communication system,
for example, is very different from both of the aforementioned technologies. This
stems from the difference in use cases. Bluetooth operates on very short ranges
and has much more relaxed throughput requirements, while a mobile commu-
nication system is much more throughput-intensive and demands much higher
reliability.

1.1 Evolution of Mobile Communication Systems

Mobile communication systems evolved drastically since their dawn. While a
mixture of fourth and fifth-generation networks (4G and 5G) are in use right
now, they are markedly different from what 1G was back in the 80s. 1G was
analog, and the cell phones were very bulky. It was not until 2G came out

3
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that mobile phones started to communicate digitally and Short Message Service
(SMS) became a reality. 3G made it possible to communicate at higher rates and
integrate the internet into mobile devices. It was not until 4G that the mobile
internet performance reached the level of WiFi since the internet service provided
by 3G was too slow and unstable to provide a satisfactory user experience. With
the introduction of 5G, mobile communications evolved into a technology that
does not only serve human users. 5G was introduced with three concepts [1,
Chapter 1.2.1]:

• Enhanced Mobile Broadband (eMBB): This concept covers the use cases
where the aim is to provide the human user with immense data rates such as
augmented reality (AR) and high-quality streaming.

• Ultra-Reliable Low-Latency Communications (URLLC): This con-
cept covers the use cases where the aim is to transfer the data from one place
to another with extremely high reliability and very low latency. These use
cases are usually very sensitive to error, therefore, the use cases under this
umbrella are usually referred to as ”mission-critical applications”, such as
vehicular communications for autonomous driving and remote surgery.

• Massive Machine-Type Communications (mMTC): In massive Inter-
net of Things (IoT) applications, there exists a high number of low-complexity
and low-data rate devices in a very small area. Handling such massive con-
nectivity requires very efficient cell management in applications such as au-
tonomous factories and smart agriculture.

One of the key enablers of this amazing evolution of wireless communication
systems is the massive multiple-input multiple-output (MIMO) technology [2,3].
This technology came up with the idea of using multiple antennas to transmit
and receive information over the air. It turned out that a MIMO channel was
richer than its single input single output (SISO) counterpart, and this richness
could be used to increase reliability by exploiting the channel’s diversity and to
increase data rates through the channel’s ability to accommodate spatial mul-
tiplexing. Another phenomenon that massive MIMO systems enjoy is channel
hardening [4]. When the number of antennas at either end of the channel in-
creases, the normally stochastic channel becomes more and more deterministic
and more communications-friendly. This not only enables more reliable com-
munication at higher data rates but also facilitates signal processing. Another
benefit of massive MIMO is its ability to serve multiple users at the same time
and frequency resource by introducing the capability of spatial multiplexing.

As we live in the fast-paced world of the twenty-first century, the question of
what 6G will be has already been raised even when 5G is not fully rolled out [5].
While the disparity between the vision and reality of 5G calls for the postpone-
ment of certain features to 6G, there still exist many ambitious goals to achieve,
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some of which are considered far-fetched by today’s technology. Consequently,
a set of key enabling technologies of 6G became quite popular in academia and
industry. One of these technologies is RISs.

Reconfigurable Intelligent Surfaces

RISs are envisioned to be periodic surfaces consisting of engineered elements
whose electromagnetic properties are externally controllable and consume very
little power [6]. In traditional MIMO, engineering efforts were directed towards
finding the best way to transmit the signal from the transmitter and using the
received signal in the smartest way possible at the receiver, given a propagation
environment. RISs represent a paradigm change, mainly because by adjusting the
phase difference between the incident and reflected waves, RISs provide partial
control over the propagation environment.

Since RISs consist of multiple elements capable of shifting the phases of inci-
dent signals, it is possible to use RISs for beamforming. With the necessary
CSI, RISs can align the phases of the multiple paths of the channel so that con-
structive interference occurs at the receiver, hence boosting the received signal’s
signal-to-noise ratio (SNR). This not only results in improved achievable rates
but also extended coverage, that is, if the system has a certain SNR threshold to
operate and the SNR would remain below at a certain location without the RIS,
the presence of an RIS might boost the SNR to a level above the threshold to
convert a dead zone into a live zone.

In addition, RISs can provide higher energy efficiency. If a certain receiver SNR
is to be satisfied in a system, by using a RIS that consumes very low power, it is
possible to boost the channel gain to decrease the transmit power requirement.
This gain is particularly important for IoT devices since they are usually battery-
operated and have simpler power amplifiers.

There are various technologies considered to fabricate RISs. Tunable dielec-
tric materials, for example, exhibit some tunable electromagnetic properties such
as permittivity and permeability upon being subjected to external stimuli such
as electric and magnetic fields, and changing temperature. Controllable elec-
tromagnetic properties make these materials a candidate technology to make
RIS a reality [7]. A closely related candidate technology is the use of micro-
electromechanical systems (MEMSs). Consisting of miniature electromechanical
devices, MEMS-based RIS elements can be designed to alter their geometries,
hence their electromagnetic properties.

In the literature, metamaterial-based RISs are quite popular. The prefix ”meta”
for these artificial materials stands for the fact that these materials exhibit prop-
erties that are not present in natural materials. This is achieved by periodi-
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cally arranging resonant structures with sub-wavelength spacing. RISs produced
through metamaterials can be used to control the phase, amplitude, and polar-
ization of the reflected wave. This not only opens up a new set of possibilities but
also brings the necessity of accurate electromagnetic models for the RISs. While
the electromagnetic properties of reflecting surfaces are studied such as in [8, 9],
full integrity between the domains of electromagnetism and wireless communi-
cations is yet to be established since the wireless communications literature still
uses the same models for RISs as those used for modeling antenna arrays.

Given the diversity of techniques in producing RISs, the diversity in RIS features
is no big surprise. One of the most popular comparisons among the different
kinds of RISs is the active RIS and the passive RIS. As the names suggest, pas-
sive RISs operate on low power and change the phases of incident waves. Active
RISs, on the other hand, consist of elements capable of amplifying and attenu-
ating incident waves in addition to changing their phases. While passive RISs
have the advantage of very low power consumption and hence the capability of
drastically increasing the energy efficiency of the system, they face the problem of
multiplicative path loss. Since passive RISs do not amplify the incident wave that
has already experienced path loss, the reflected wave experiences path loss once
again until it reaches its target. It is still argued that the multiplicative path loss
is counteracted by the SNR boost introduced by the RIS, however, depending on
the propagation conditions, this might require a huge number of RIS elements
which complicates processes such as channel estimation and optimizing the RIS
configuration.

Active RISs, on the other hand, have the power of amplification and perform
better at combating the multiplicative path loss phenomenon [10]. However, due
to the power amplifiers they possess, they introduce amplifier noise to the prop-
agating wave. On top of this, due to the higher power consumption compared to
passive RISs, active RISs might not boost the energy efficiency of the system as
much.

1.2 Theoretical Background

This thesis is highly focused on statistical signal processing. Statistical signal
processing is a sub-area of signal processing where the processed signals contain
any kind of randomness. That is, signals corrupted by noise, signals with non-
deterministic time/frequency variations, random variables, random vectors, and
random processes are all within the scope of statistical signal processing. In sta-
tistical signal processing, problems based on detection and estimation come up
ubiquitously. For certain problems, we know that there exist 2 or more possible
true states of nature. Based on our observation of nature, we formulate these
possible true states as hypotheses, and we test our observation against our hy-
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potheses to determine the true state of nature. These kinds of problems are called
detection problems. On the other hand, we might also want to determine a quan-
tity buried in nature based on our observation, which is called estimation. We
provide some theoretical background on detection and estimation in the following
subsections.

In addition to detection and estimation theory, we will also need some tools
regarding MIMO processing at the receiver side. Having multiple antennas at
the receiver creates multiple options for receiver signal processing. These options
include focusing on maximizing the power received from the intended signal,
eliminating interference, or maintaining a balance between the two objectives.
We provide some background on this in the following subsections.

We also require some background on an algorithm called Multiple signal clas-
sification (MUSIC). Introduced in [11], the MUSIC algorithm characterizes mul-
tiple parameters associated with multiple signals by separating the observation
into signal and noise subspaces. Assuming that the number of signals is known,
this algorithm uses the signal-noise orthogonality by creating peaks at certain
parameter values. We provide more details in the following subsections.

Detection Theory

In detection problems, the common element is that we have two or more hy-
potheses, and based on observation, we decide among two or more possible situ-
ations [12, Chapter II.A]. We can put the hypothesis testing problems into three
categories involving simple hypothesis testing, and a fourth category involving
composite hypothesis testing:

• Bayesian Hypothesis Testing: In this framework, the hypotheses’ prior
probabilities of occurrence are considered to be known, and the state of nature
is considered to be a discrete random variable. For a binary hypothesis testing
problem, for example, the state of nature is considered to be a Bernoulli
random variable [12, Chapter II.B]. In such problems, the cost of declaring
hypothesis A while the truth is B is known, and based on this knowledge
and the prior distribution, the Bayes risk is formulated and the decision rule
minimizing this risk is called the Bayes decision rule. Now let us provide a
simple binary hypothesis testing formulation.

LetH0 andH1 denote the null and alternative hypotheses with prior probabil-
ities p0 and p1 = 1− p0. Let Cij ≥ 0 denote the cost of choosing hypothesis
i while the true hypothesis is j. Let the observation Y reside within the
set Γ, and δ be the decision rule partitioning Γ into Γ0 and Γ1. Denoting
Pj(Γi) ≜ P (Y ∈ Γi|Hj), we can define the conditional risk as

Rj(δ) = C1jPj(Γ1) + C0jPj(Γ0). (1.1)



8 CHAPTER 1. INTRODUCTION

Then using the prior probabilities, we can define the Bayes risk:

r(δ) = p0R0(δ) + p1R1(δ) (1.2)

δB = argmin
δ

r(δ), (1.3)

where δB minimizing r(δ) over all rules is called the Bayes rule. To determine
the Bayes rule, it is possible to rewrite (1.2) as

r(δ) =

1∑
j=0

pjRj(δ) =

1∑
j=0

pj [C1jPj(Γ1) + C0j(1− Pj(Γ1)︸ ︷︷ ︸
Pj(Γ0)

)]

=

1∑
j0

pjC0j +

1∑
j0

pj(C1j − C0j)Pj(Γ1)

=

1∑
j0

pjC0j +

∫
Γ1

 1∑
j0

pj(C1j − C0j)pj(y)

 dy. (1.4)

If we choose Γ1 as follows, we minimize r(δ) over all Γ1 ⊆ Γ:

Γ1 =

y ∈ Γ :

1∑
j=0

pj(C1j − C0j)pj(y) ≤ 0


= {y ∈ Γ : p1(C11 − C01) ≤ p1(C00 − C10)0} . (1.5)

Making the reasonable assumption C11 < C01, we obtain Γ1 as follows:

τ ≜
p0(C10 − C00)

p1(C01 − C11)
, Γ1 = {y ∈ Γ : p1(y) ≥ τp0(y)}. (1.6)

This result leads to the likelihood ratio test :

L(y) =
p1(y)

p0(y)
⋚ τ. (1.7)

If L(y) < τ , we choose H0 we choose H1 if L(y) > τ , giving us the Bayes
rule. In communication applications, special cases of this apply. These can
be listed as follows:

– Uniform Cost Assignment (UCA): If we consider symbol decod-
ing, the kind of error we make is not important, we either decode it
correctly or incorrectly. Consequently, this cost assignment is used in
communication applications:

Cij =

{
0 i = j

1 i ̸= j
. (1.8)
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– Equal Priors: In both binary and M -ary hypothesis testing scenarios,
we get a huge volume of data with high diversity. Consequently, we end
up with having equally likely symbols, that is, pj = 1

M where M is the
number of possible outcomes.

For generic priors and uniform cost assignment, the Bayes rule is called the
Maximum a posteriori (MAP) rule. Furthermore, if there are equal priors, it
is called the maximum likelihood (ML) rule.

• Minimax Hypothesis Testing: In this framework, the prior probabilities
are unknown. The aim is to minimize the maximum of the conditional risks.
It is proven that an ”equalizer rule”, a rule that equates all conditional risks,
solves the minimax problem, details of which are discussed in this section.
The most compact formulation of the minimax rule δM can be expressed as

δM = argmin
δ

(max(R0(δ), R1(δ))). (1.9)

Since the priors are unknown, we can consider the Bayes rule as a function of
δ and p0:

r(p0, δ) = p0R0(δ) + (1− p0)R1(δ), (1.10)

which is maximized at either p0 = 0 or p0 = 1. Suppose δp0 is the Bayes rule
for the prior p0. Since there is one unique Bayes rule for each value of p0, we
essentially have a single variable. Hence we can define

V (p0) = r(p0, δp0
) (1.11)

V (0) = C11, V (1) = C00. (1.12)

Now let us define pL ≜ argmaxp0
V (p0), the least favorable prior. The mini-

max decision rule is the Bayes rule for the least favorable prior. An intuitive
proof of this can be made as follows:

– If p′0 < pL, then max(R0(δ(p
′
0), R1(δ(p

′
0))) = R0(δ(p

′
0) > R0(δ(pL))

– If p′0 > pL, then max(R0(δ(p
′
0), R1(δ(p

′
0))) = R1(δ(p

′
0) > R1(δ(pL)),

hence δpL
outperforms all Bayes rules in the minimax sense.

• Neyman-Pearson Hypothesis Testing: In this framework, we consider
binary hypothesis testing problems. In many detection problems, we cannot
associate a solid cost structure with risks. In such cases, we consider the
probability of a certain kind of error to happen. In binary hypothesis testing,
we have two types of errors: false alarm (type 1) and miss (type 2). A
Neyman-Pearson detector usually places a constraint on the probability of
false alarm and aims to maximize the detection probability. We denote this
as

max
δ

PD(δ) s.t. PF (δ) ≤ α, (1.13)
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where PD(δ) and PF (δ) denote the detection and false-alarm probabilities for
the decision rule δ and α is called the significance level of the test. We denote
the miss probability as PM (δ) = 1− PD(δ), however, this framework mostly
considers detection probability maximization. Based on the observation y,
suppose we formulate the decision rule as

δ(y) =

{
1 y ∈ Γ1

0 y ∈ Γ0

. (1.14)

If we condition the decision rule output on the null hypothesis, we can obtain
the false alarm probability/rate:

PF (δ) = P (y ∈ Γ1|H0) =

∫
y∈Γ1

p0(y)dy =

∫
y∈Γ

p0(y)dy

= E[δ(y)|H0] ≜ E0[δ(y)]. (1.15)

As for the detection probability we have

PD(δ) = P (y ∈ Γ1|H1) =

∫
y∈Γ1

p1(y)dy =

∫
y∈Γ

p1(y)dy

= E[δ(y)|H1] ≜ E1[δ(y)]. (1.16)

The following lemma, known as the Neyman-Pearson Lemma establishes the
fundamentals of Neyman-Pearson hypothesis testing:

Lemma 1. Neyman-Pearson Lemma: For a binary hypothesis testing
with α > 0, the following hold:

Optimality: Let δ̃ be any decision rule satisfying PF (δ) ≤ α and let δ̃′ be
any decision rule of the form

δ̃(y) =


1 p1(y) > ηp0(y)

γ(y) p1(y) = ηp0(y)

0 p1(y) < ηp0(y)

, (1.17)

where η ≥ 0 and γ(y) ∈ [0, 1] are such that PF (δ̃) = α. Then PD(δ̃′) ≥ PD(δ̃).
That is, any decision in the form of (1.17) is a Neyman-Pearson (NP) rule.

Existence: For every α ∈ (0, 1), there exists a Neyman-Pearson rule in the
form (1.17).

Uniqueness: Suppose that δ′′ is any α-level NP decision rule. Then, δ′′ must
be of the form (1.17) except possibly on a subset of Γ having zero probability
under H0 or H1.

Proof. The proof of the Neyman-Pearson Lemma can be found in [12, Propo-
sition II.D.1].
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• Composite Hypothesis Testing: So far, we have discussed the aspects of
simple hypothesis testing, that is, we had a single possible distribution for
each hypothesis. On the other hand, there exist many problems where there
are multiple possible distributions for each hypothesis. It is quite common
that the distributions of the hypotheses depend on one or more parameters
that have their own distributions. Such hypothesis testing problems are called
composite hypothesis testing problems. We can provide a simple radar detec-
tion problem as an example for this:

H0 : y(t) = n(t)

H1 : y(t) = As(t− τ) + n(t),

where H0 is a simple hypothesis and H1 is a composite hypothesis depending

on the set of parameters θ =
[
A τ

]T
.

Bayesian Formulation: Let Θ ∈ Λ be the parameter or the set of parame-
ters governing the hypothesis testing problem. We consider Θ to be a random
variable taking values within Λ. We partition this set into Λ0 and Λ1, over
which Θ resides when H0 and H1 are true, respectively. Let pθ(y) be the
conditional distribution of y given that the parameter takes the value Θ = θ.

Cost function: C[i, θ], denoting the cost when y ∼ pθ, and i ∈ {0, 1}.
Conditional risk: Rθ(δ) = E[C[δ(Y ), θ]|Θ = θ]

Bayes Risk: r(δ) = Eθ[Rθ(δ)]. Bayes rule is the δ that minimizes r(δ).

Neyman-Pearson Formulation: We do not consider any prior distribu-
tions for the hypotheses here. False alarm and detection probabilities are
denoted as

PF (δ̃; θ) = Eθ[δ̃(y)], θ ∈ Λ0 (1.18a)

PD(δ̃; θ) = Eθ[δ̃(y)], θ ∈ Λ1. (1.18b)

While we do not go into the details in this thesis, there are two important
tests in the composite Neyman-Pearson formulation:

– Uniformly Most Powerful (UMP) Test: This test maximizes PD

for for all θ ∈ Λ1 such that PF ≤ α for all θ ∈ Λ0

– Locally Most Powerful (LMP) Test: Suppose that H0 : Θ = θ0 and
H1 : θ > θ1. Consider the cases where Θ takes values very close to θ0,
for example, in weak signal detection problems. We take a Taylor series
expansion around θ0:

PD(δ̃; θ) = PD(δ̃; θ0)︸ ︷︷ ︸
PF (δ̃)

+(θ − θ0)P
′
D(δ̃; θ0) + O((θ − θ0)

2)︸ ︷︷ ︸
rest of the terms

(1.19)

PD(δ̃; θ) ≈ α+ (θ − θ0)P
′
D(δ̃; θ0) (1.20)

.
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From this approximation, it is possible to choose δ̃ to maximize P ′
D(δ̃; θ0),

resulting in a locally optimal test.

Estimation Theory

Estimation theory specializes in determining the value of an unknown parame-
ter as accurately as possible. Depending on whether prior information on the
parameter is available or not, we consider two different frameworks: Bayesian
parameter estimation where the parameter is a random variable with a known
prior distribution, and non-random parameter estimation where the parameter
does not exhibit any probabilistic structure and is considered to be deterministic.

• Bayesian Parameter Estimation: Consider a random observation Y ∈ Γ,
whose distribution depends on a random parameter Θ ∈ Λ, that is Y ∼ Pθ.
The aim is to observe Y and find a function θ̂ : Γ 7→ Λ such that θ̂(y) is the
best guess of θ.

The natural question at this point would be: ”Best in what sense?”. To
determine an optimality criterion, we define a cost function.

– For C : Λ× Λ 7→ R+, C[a, θ] denotes the cost of estimating θ as a.

– The conditional risk discussed in detection theory can be defined here
as Rθ(θ̂) ≜ E[C[θ̂(Y ),Θ]|Θ = θ].

– As a result, the corresponding Bayes risk becomes r(θ) = Eθ[Rθ(θ̂)]. The
Bayesian estimator minimizes the Bayes risk.

Using the law of iterated expectations, the Bayes risk can be rewritten as

r(θ) = Eθ[E[C[θ̂(Y ),Θ]|Θ]]

= Eθ[E[C[θ̂(Y ),Θ]]

= Eθ[E[C[θ̂(Y ),Θ]|Y ]]. (1.21)

Hence the Bayesian estimator minimizes the posterior cost. Many of the well-
known Bayesian estimators differ by the considered cost function, which can
be specified as follows:

– Minimum mean squared error (MMSE) Estimator: C[a, θ] = (a− θ)2

– Minimum mean absolute error (MMAE) Estimator: C[a, θ] = |a− θ|

– MAP Estimator: Uniform cost function: C[a, θ] =

{
0 |a− θ| ≤ ∆

1 |a− θ| > ∆
for

some ∆ > 0.

MMSE Estimator: In this case, the Bayes risk is

r(θ) = E[(θ̂(Y )− θ)2]. (1.22)
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We can express the posterior cost as

E[(θ̂(Y )−Θ)2|Y = y] = E[(θ̂(Y ))2|Y = y]− 2E[θ̂(Y )Θ|Y = y] + E[Θ2|Y = y]

= (θ̂(y))2 − 2θ̂(y)E[Θ|Y = y] + E[Θ2|Y = y]. (1.23)

This is a quadratic polynomial in θ̂(y), hence we can find the minimum of
this point as

∂

∂θ̂(Y )
E[(θ̂(Y )−Θ)|Y = y] = 2θ̂(y)− 2E[Θ|Y = y] = 0

θ̂MMSE(y) = E[Θ|Y = y]. (1.24)

Therefore, another name for the MMSE estimator is the conditional mean
estimator.

MAP Estimator: In this case, the posterior cost can be expressed as

E[C[θ̂(Y ),Θ]|Y = y] = P (|θ̂(Y )−Θ| > ∆|Y = y)

= 1− P (|θ̂(Y )−Θ| ≤ ∆|Y = y). (1.25)

Hence, the above expression is minimized when P (|θ̂(Y )−Θ| ≤ ∆|Y = y) is
maximized. For small ∆ and a smooth posterior distribution w(θ|y), this is
maximized by

θ̂MAP(y) = argmax
θ

w(θ|y). (1.26)

For discrete Θ, this corresponds to Bayesian M -ary hypothesis testing with
uniform cost assignment. Since the MAP estimator maximizes the posterior
density/probability, it is also known as conditional mode estimator. Note that
using the Bayes rule, we can obtain

w(θ|y) = pθ(y)w(θ)

p(y)
, (1.27)

and also note that p(y) does not depend on θ. Therefore, (1.26) can be
expressed as

θ̂MAP(y) = argmax
θ

pθ(y)w(θ). (1.28)

• Non-random Parameter Estimation: Contrary to the Bayesian parame-
ter estimation framework, non-random parameter estimation framework con-
siders the problems where the available prior information is insufficient. One
of the most widely known estimators in this framework is the ML estimator,
which acts like the non-random framework counterpart of the Bayesian MAP
estimator in (1.28) without the prior distribution w(θ):

θ̂ML(y) = argmax
θ

pθ(y). (1.29)
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Cramér-Rao Lower Bound (CRLB)

To evaluate the performance of an estimator, using lower bounds on its vari-
ance is essential. To this end, we introduce the CRLB, which provides a lower
bound for the variance of any unbiased estimator. In its vector form, one can
express the CRLB as

E[(θ̂(y)− θ)(θ̂(y)− θ)H ] ⪰ I−1(y;θ), (1.30)

where I(y;θ) denotes the Fisher Information Matrix (FIM), which is defined
as

I(y;θ) ≜ E

[(
∂

∂θ
log pθ(y)

)(
∂

∂θ
log pθ(y)

)H
]
. (1.31)

Receive Beamforming for MIMO Systems

Having multiple antenna elements has proven to be advantageous for both trans-
mission and reception in wireless communication systems [13]. Benefits such as
channel hardening, multiplexing, and diversity are the fundamental ideas behind
massive MIMO systems. Among these ideas, we will focus on receive beamform-
ing in this section. First, let’s consider the uplink of a generic MIMO system
with K single-antenna users and M receiver antennas. Then the system model
becomes

y = Hx+w ∈ CM×1, (1.32)

where x =
[
x1 x2 . . . xK

]T ∈ CK×1 denotes the ensemble of signals trans-
mitted by the K users, H ∈ CM×K denotes the uplink MIMO channel, and
w,y ∈ CM×1 denote the additive noise and the received signal vectors at the
base station, respectively.

Maximum Ratio (MR)

MR processing focuses on capturing the maximum amount of power from the
intended signal without taking interference into consideration. In the context of
the system model we have provided, the combining matrix VMR = HH ∈ CK×M .
Hence the combiner output becomes

ỹMR = VMRy = HHHx+HHw ∈ CK×1. (1.33)

Zero Forcing (ZF)

While MR focuses on capturing as much power as possible from the signal of
interest, ZF focuses on eliminating the interference. To this end, ZF utilizes the
pseudoinverse of the channel, that is, VZF = (HHH)−1HH ∈ CK×M . This
results in the combiner output

ỹZF = x+ (HHH)−1HHw ∈ CK×1. (1.34)
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Multiple Signal Classification: A Subspace-based Method to
Estimate Parameters

In this section, we focus on the MUSIC algorithm introduced in [11]. This algo-
rithm resolves distinct transmitted signals from a noisy observation that contains
a combination of these signals. This algorithm was originally developed to esti-
mate the angle of arrivals (AoAs) of multiple signals impinging on an antenna
array. Then, it has been used for more generic parameter estimation problems in
contexts where the observation is a combination of these parameters. For exam-
ple, in [14], a MUSIC algorithm with higher dimensionality is used to estimate
not only the azimuth and elevation AoA, but also the distance between the trans-
mitter and the receiver. For clarity, however, we shall consider a far-field system
model with a uniform linear array (ULA) receiver consisting of N antennas and
K ≤ N impinging signals. The signal received at a single time instant l can be
expressed as

y1[l]
y2[l]
...

yN [l]


︸ ︷︷ ︸

≜y[l]

=
[
a(θ1) a(θ2) . . . a(θK)

]︸ ︷︷ ︸
≜A(θ)


s1[l]
s2[l]
...

sK [l]


︸ ︷︷ ︸

≜s[l]

+


w1[l]
w2[l]
...

wN [l]


︸ ︷︷ ︸

≜w[l]

, (1.35)

where θk is the azimuth AoA of the k-th impinging signal, sk is a complex quan-
tity denoting the combined effects of the transmitted signal and the propagation
channel for the k-th signal, and w[l] ∼ CN (0, IN ) is the additive noise at the
receiver. a(θk) is the array response for the k-th signal with the azimuth AoA
θk. After this step, the MUSIC algorithm considers the covariance matrix of y[l],
which is realized by taking the sample covariance matrix of y[l] over L transmis-
sions, that is,

Ry =
1

L

L∑
l=1

y[l]y[l]yH [l]. (1.36)

Assuming that there are sufficiently many samples and the signal & noise are
independent, we state R̃y as

Ry = A(θ)S̃AH(θ) + σ2
wIN , (1.37)

where the signal component has rank K. Among the N eigenvectors of Ry, the
span of those associated with the K largest eigenvalues is considered to be the
signal subspace, and the span of the remaining N −K eigenvectors is considered
to be the noise subspace. From here, we can construct a matrix Un ∈ CN×(N−K)

containing the eigenvectors belonging to the latter category. Recall that our aim is
to find the K signals that are buried inside our observation. Since those K signals
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are within the signal subspace, they must be orthogonal to all noise eigenvectors.
For a given θ̂, we know that the signal is supposed to be a(θ̂). Therefore, if we
compute

S(θ̂) =
1

aH(θ̂)UnUH
n a(θ̂)

, (1.38)

then we will obtain a very large value for θ̂ ∈ {θ1, . . . , θK}. By ensembling the
values obtained from this computation, the MUSIC spectrum is constructed, and
the K AoA values are obtained by peak detection.

1.3 Open Problems in RIS-Aided Wireless Communication
Systems

Despite the potential of RIS as a 6G-enabling technology, it does not come without
its problems. Even the comparison between active RISs and passive RISs shows
that RISs not only have their problems but also introduce a plethora of system-
level problems. First of all, configuring the RIS based on CSI requires a mid-haul
link with the Radio Access Network (RAN). Over this link, the frequency of
updating the RIS configuration also becomes a question. While updating the
RIS configuration frequently over time improves the system’s resilience against
channel aging, frequent updates put a load on the mid-haul link between the RAN
and the RIS. In addition, RIS multiplicatively increases the channel dimensions,
that is, the cascaded channel’s dimension is equal to the dimension of the end-to-
end channel multiplied by the number of RIS elements. To use the RIS efficiently,
all dimensions of the channel have to be explored. As a result, more pilots have
to be transmitted, which decreases spectral efficiency.

Another problem is that as the requirement for frequent deployment increases,
multiple operators start to share sites and in an RIS-aided future cellular/cell-
free network, the operators’ RISs will most likely be close to each other as well.
As a result, the transmissions from users subscribed to a certain operator will
also reflect through another operator’s RIS and this unintended reflection will
reach the BS as well, causing interference. Moreover, during the channel esti-
mation phase, both operators will use sequences of pilot RIS configurations, and
since these sequences will most likely be defined on the 3rd Generation Partner-
ship Project (3GPP) standards, the operators might pick the same sequence. A
user’s uplink pilot transmission goes through not only its operator’s RIS but also
through the foreign operator’s RIS. Effectively, the second undesired path acts
as another virtual user using the same pilot sequence and the same RIS con-
figuration. Consequently, a new kind of pilot contamination takes place, which
can be called ”multi-RIS pilot contamination” in the most general sense, and
in a multi-operator setting, this can be called ”inter-operator pilot contamina-
tion”. This phenomenon was introduced in [15] and its statistical analysis was
performed in [16]. This thesis focuses on this new kind of pilot contamination.
To combat a newly discovered adverse phenomenon via signal processing-based
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approaches, it is crucial to characterize the phenomenon mathematically. To this
end, we introduce a simple multi-operator setup consisting of two single-antenna
base stations, two N -element RISs, and two single-antenna users each subscribed
to a different operator. In such a setup, we construct a received signal model and
a misspecified signal model, the latter ignoring the transmission through the for-
eign RIS. We consider two cases: in the first case, the operators adopt the same
sequence of RIS configurations to explore the different dimensions of the channel.
In the second case, the operators double the number of transmitted pilots and
choose orthogonal sequences of RIS configurations.

In the following section, the thesis outline and each chapter’s contribution are
explained.

1.4 Thesis Outline and Contributions

Chapter 2

In this chapter, we introduce the multi-RIS pilot contamination phenomenon. In
a two-operator, two-RIS, and two-user setting, we demonstrate how multi-RIS
pilot contamination arises and demonstrate why this cannot be avoided by pilot
signal design. We assume that the RIS-BS channels are deterministic and known,
and the user-RIS channels are deterministic and unknown. We demonstrate that
doubling the pilot length and using orthogonal RIS configuration sequences re-
solve the problem, however, this causes a significant increase in the pilot sequence
length. We analytically characterize the multi-RIS pilot contamination and show
that for a deterministic estimator, this appears as an estimation bias term during
the channel estimation phase. While the RISs are configured based on the channel
estimates, the data transmission phase also shows that a significant degradation
happens during data signal equalization due to the degraded channel estimation
performance due to multi-RIS pilot contamination. This chapter is based on the
following article:

• Doğa Gürgünoğlu, Emil Björnson, Gábor Fodor, Impact of Pilot Con-
tamination Between Operators With Interfering Reconfigurable Intelligent
Surfaces, IEEE International Black Sea Conference on Communications and
Networking 2023, 2023.

Chapter 3

In this chapter, we extend our analysis in Chapter 2 into stochastic channels where
we consider correlated Rayleigh fading. We derive the misspecified MMSE esti-
mator for the user equipment (UE)-RIS channels and derive the resulting channel
estimation mean squared error (MSE) in closed form. In the case of stochastic
channels, the multi-RIS pilot contamination effect appears as an additive noise
term. Based on the imperfect CSI obtained in the channel estimation phase, also
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derive the capacity lower bound [13, Eq. 2.46] and compare it against the ergodic
capacity of the channel. Our numerical results show that multi-RIS pilot contam-
ination and lack of awareness of the unintended reflection significantly decrease
the capacity lower bound. This chapter is based on the following article:

• Doğa Gürgünoğlu, Emil Björnson, Gábor Fodor, Combating Inter-Operator
Pilot Contamination in Reconfigurable Intelligent Surfaces Assisted Multi-
Operator Networks, IEEE Transactions on Communications, 2024.

Chapter 4

In this chapter, we revisit the problem of inter-operator pilot contamination that
we have considered in Chapters 2 and 3. This time, we consider a multi-antenna
base station that is capable of receive beamforming. We explore the use of this
capability to eliminate inter-operator pilot contamination in multi-operator multi-
RIS systems. To this end, we first demonstrate how inter-operator pilot contam-
ination arises even when there is no model misspecification (as opposed to the
system setup in Chapters 2 and 3). Then, we consider three different schemes, one
of which is the baseline scheme. In the baseline scheme, we consider maximum
ratio combining (MRC) at the BS focused on absorbing maximal power from
the operator’s own RIS and do not orthogonalize the RIS configurations. That
is, inter-operator pilot contamination is not eliminated at either the BS or the
RIS. In Scheme 1, we eliminate inter-operator pilot contamination at the RISs
by orthogonalizing the configurations during the pilot transmission case. How-
ever, this comes with the price of doubling the number of pilots transmitted over
time. In Scheme 2, the BS cuts off the signals coming from the other operator’s
RIS by null forming and hence eliminating inter-operator pilot contamination. In
this chapter, we compare these schemes in terms of channel estimation and data
transmission performance.

• Doğa Gürgünoğlu, Ziya Gülgün, Emil Björnson, Gábor Fodor, Joint Pilot-
Based Localization and Channel Estimation in RIS-Aided Communication
Systems, Submitted to Signal Processing, 2025.

Chapter 5

In this chapter, we consider a physical setup similar to that in Chapters 2 and
3, however, with a single operator. While the proposed solution to overcome
the multi-RIS pilot contamination in Chapters 2 and 3 involved doubling the
number of pilot transmissions, we propose a more effective method to combat
the multi-RIS pilot contamination by exploiting the channel geometry, that is,
parameterizing the channels in terms of angles of arrival. For a single RIS, this
was done in [17], however, we investigate the feasibility of parametric channel
estimation in the presence of multiple RISs. This way, we decrease the number of
parameters to estimate, and we also get the opportunity to localize the user via
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triangulation. We consider pure LOS channels and explore the feasibility of using
positioning pilots for estimating the channels parametrically. Based on the az-
imuth AoA estimates, using the RIS geometry, for which we considered ULAs, we
explore the possibility of estimating the UE-RIS channels by deriving the CRLB
which is a lower bound on the MSE of any unbiased estimator. Furthermore,
using the deployment geometry, we derive the Positioning Error Bound (PEB)
using the CRLB on AoA estimation. Our numerical results show that for pure
LOS channels, such a scheme is feasible as long as a proper algorithm to complete
these tasks is designed. This chapter is based on the following article:

• Doğa Gürgünoğlu, Emil Björnson, Gábor Fodor, Joint Pilot-Based Local-
ization and Channel Estimation in RIS-Aided Communication Systems, IEEE
Wireless Communications Letters, 2024.

Chapter 6

In this chapter, we consider a multiuser multiple-input multiple-output (MU-MIMO)
system where the users are located within the radiative near field of the base
station with aperture antennas. We consider a two-dimensional multiple signal
classification algorithm (2D-MUSIC) to estimate the range and azimuth angles
of arrival for the users’ channels, utilizing parametric radiative near-field channel
models. We analyze the system performance by deriving the Cramér-Rao bound
(CRB) for parametric estimation, and its effectiveness is compared against the
least squares estimator, a non-parametric estimator. We derive closed-form ex-
pressions for the CRB, which has not been done for aperture arrays before. Our
numerical results indicate that the 2D-MUSIC algorithm outperforms the least
squares estimator. Furthermore, the results demonstrate that the performance of
2D-MUSIC achieves the parametric channel estimation CRB, which shows that
the algorithm is asymptotically consistent and efficient.

• Doğa Gürgünoğlu, Alva Kosasih, Parisa Ramezani, Özlem Tuğfe Demir,
Emil Björnson, Gábor Fodor, Performance Analysis of a 2D-MUSIC Algo-
rithm for Parametric Near-Field Channel Estimation, Submitted to IEEE
Wireless Communications Letters, 2024.





Chapter 2

Impact of Pilot Contamination
Between Operators With
Interfering Reconfigurable
Intelligent Surfaces

Abstract

In this paper, we study the impact of pilot contamination in a system
where two operators serve their respective users with the assistance of two
wide-band reconfigurable intelligent surfaces (RIS), each belonging to a sin-
gle operator. We consider one active user per operator and they use disjoint
narrow frequency bands. Although each RIS is dedicated to a single oper-
ator, both users’ transmissions are reflected by both RISs. We show that
this creates a new kind of pilot contamination effect when pilots are trans-
mitted simultaneously. Since combating inter-operator pilot contamination
in RIS-assisted networks would require long pilot signal sequences to main-
tain orthogonality among the users of different operators, we propose the
orthogonal configurations of the RISs. Numerical results show that this ap-
proach completely eliminates pilot contamination, and significantly improves
the performance in terms of channel estimation and equalization by removing
the channel estimation bias.

2.1 Introduction

Pilot contamination is a key problem that frequently arises in wireless commu-
nication systems [18]. When multiple users use the same pilot sequences simul-
taneously in the same band, due to the limited channel coherence time, the BS
cannot distinguish their channels, which typically results in poor channel esti-
mates and extra beamformed interference towards pilot-sharing UEs. Therefore,

21
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pilot contamination adversely affects the coherent reception of data, and methods
to mitigate pilot contamination have been widely studied in the communication
literature [18–21].

In recent years, RISs have arisen as a new technology component for 6G
[22]. An RIS is a surface consisting of multiple reflecting elements that have
sub-wavelength spacing and controllable reflection properties [23]. This feature
provides partial control of the propagation environment that can lead to better
services for users, especially when their serving BS is not in their LOS. By
adjusting the impedances of the individual elements via a RIS controller, the
elements are capable of adding desired phase shifts to the reflected signals, thereby
forming reflected beams in desired directions that can significantly boost the
signal-to-interference-plus-noise ratio (SINR) at the receiver [22].

On the other hand, the addition of RISs to existing systems introduces new
design and operational challenges. For example, the length of the pilot signal
required by a single UE is proportional to the number of RIS elements (e.g.,
tens or hundreds), because the RIS must change its configuration to explore all
channel dimensions [17, 24]. In addition, passive RIS causes multiplicative path
losses, which increases the large-scale fading loss between the transmitter and
the receiver [25]. Active RISs [10], on the other hand, are less energy efficient,
and due to the presence of amplifiers, it introduces additional noise. While the
aforementioned problems caused by the RIS have been recognized [26], pilot con-
tamination caused by the presence of multiple RISs has not been studied in the
literature. In this paper, however, we identify the creation of pilot contamination
as another practical challenge: a UE that transmits pilots to its serving BS via
multiple RIS, which change their configurations simultaneously, may cause a new
kind of pilot contamination that has not been studied.

Wireless communication systems are governed by standards, and physical-
layer specifications usually contain pre-defined sequences for pilot signals and
codebooks for directional beamforming [27]. While the use RISs is not standard-
ized yet, it is likely that the configuration sequences that facilitate the deployment
of RISs while maintaining interoperability will be standardized. Consequently,
when multiple cellular networks are deployed by different network operators in
overlapping geographical areas, the RISs may adopt identical or overlapping pilot
sequences and cause pilot contamination.

Due to the ability to change the environment’s propagation characteristics,
deploying multiple RISs in a geographical area also implies that pilot contami-
nation can occur due to a UE’s own pilot signal. Since this phenomenon may
exacerbate the pilot contamination problem, it is clear that pilot contamination
due to the presence of multiple RISs must be dealt with.

In this paper, we study the pilot contamination caused by the presence of
multiple RISs by considering the uplink of a system consisting of two wide-band
RISs, two single-antenna UEs, and two co-located single-antenna BSs, where the
two UEs are subscribed to different operators with non-overlapping narrow-band
channels at different frequencies. Each RIS is dedicated to a single operator,
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but both UE signals are reflected from both RISs. In this scenario, although
there is no interference between the two UEs, both RISs affect both frequency
bands. We propose the use of orthogonal RIS configuration sequences during
pilot transmission to avoid pilot contamination. First, we describe the channel
estimation procedure with a lack of information on channel statistics, i.e., when
the channels are characterized by deterministic parameters. Assuming identical
and orthogonal RIS configurations, we derive the statistics of the ML estimates
and the effect of pilot contamination on channel estimation. Then we analyze
how it affects the data estimation process, and discuss how this effect can be
mitigated.

2.2 System Model

We consider the uplink of a cellular system consisting of two wide-band RIS, two
single-antenna UE, and two co-located single-antenna BSs, as shown in Fig. 2.1,
where each RIS hasN reflecting elements. The two UEs are subscribed to different
operators—who use site-sharing to reduce deployment costs—and transmit over
two disjoint narrow frequency bands to their respective serving BSs. Each RIS
is dedicated to and controlled by a single operator but affects both bands. We
consider an environment where the direct UE-BS paths are blocked, while the
UE-RIS and RIS-BS paths are operational. Since the BSs and RISs have fixed
deployment locations, we assume the RIS-BS channels hk are known, while the
UE-RIS channels gk are unknown and to be estimated for k = 1, 2.

The signal transmitted by UE k reaches its serving BS through the channels hk

and gk, for k = 1, 2. Importantly, the UEs’ transmitted signals are also reflected
by the non-serving operator’s RISs towards their serving BSs, which contaminates
the pilot signal reflected by the serving RIS. This phenomenon is illustrated in
Fig. 2.1, where the resulting UE-RIS and RIS-BS channels are denoted by pk and
qk, respectively, for k = 1, 2.

Since the BSs are unaware of the channels qk and pk, they adopt misspecified
system models for the received pilot and data signals. We also assume that
the prior distributions of the channels are unavailable. Consequently, the BSs
estimate the channels g1 and g2 via classical non-Bayesian parameter estimation
methods during the channel estimation phase and use the channel estimates to
perform data estimation [12, Section IV.C] during the data transmission phase.
Defining the pilot signal of UE k as sk ∈ C, the received pilot signals on bands 1
and 2 at the BSs can be expressed as

yp1 =
√

Pph
T
1 Φ1g1s1 +

√
Ppq

T
1 Φ2p1s1 + wp1, (2.1a)

yp2 =
√

Pph
T
2 Φ2g2s2 +

√
Ppq

T
2 Φ1p2s2 + wp2, (2.1b)

where ypk denotes the received pilot signal, wpk ∼ CN (0, 1) denotes the receiver
noise for band k, and Φk = diag(e−jϕk1 , . . . , e−jϕkN ) denotes the kth RIS’s re-
sponse matrix. We assume s1 = s2 = 1 without loss of generality. For channel
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RIS 1, Φ1 RIS 2, Φ2

UE 1 UE 2

BS 1 BS 2

g1 g2

p1p2

q1q2

h1 h2

Figure 2.1: System setup with two UEs, two RISs and two co-located single-antenna BSs.
The blue channels correspond to frequency band 1, and the red channels correspond to
frequency band 2, subscribed by UEs 1 and 2, respectively. Desired channels are denoted
by solid lines, while the undesired channels whose existence are unknown to the BSs are
denoted by dashed lines. Each channel vector is N -dimensional in line with the number
of elements in each RIS.
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estimation, it is more convenient to rewrite (2.1) as

yp1 =
√
Ppϕ

T
1 Dh1g1 +

√
Ppϕ

T
2 Dq1p1 + wp1, (2.2a)

yp2 =
√
Ppϕ

T
2 Dh2g2 +

√
Ppϕ

T
1 Dq2p2 + wp2, (2.2b)

where Dhk
and Dqk

represent the diagonal matrices containing the elements of
hk and qk, and ϕk denotes the column vectors containing the diagonal entries of
Φk for k = 1, 2.

As there are N parameters in g1 and g2, at least N linearly independent
observations are needed to estimate them. To this end, we perform L ≥ N
pilot transmissions over time, and we vertically stack the received pilot signals to
obtain

yp1 =
√
PpB1Dh1

g1 +
√

PpB2Dq1
p1 +wp1, (2.3a)

yp2 =
√

PpB2Dh2
g2 +

√
PpB1Dq2

p2 +wp2, (2.3b)

where ypk = [ypk[1], . . . , ypk[L]]
T denotes the sequence of received uplink pilots

from the kth UE over L time instances, and the matrices B1 and B2 repre-
sent the sequence of RIS configurations over L time instances, that is, Bk ≜[
ϕk[1] . . . ϕk[L]

]T
for k = 1, 2. Recall that BS 1 is not aware of the reflection

of UE 1’s signal from RIS 2 and vice versa. Consequently, the BSs assumes the
following misspecified received pilot signal models:

ŷp1 =
√

PpB1Dh1
g1 +wp1, (2.4a)

ŷp2 =
√

PpB2Dh2g2 +wp2. (2.4b)

Based on (2.4), the estimation of g1 and g2 is described and analyzed in the next
section.

2.3 Maximum Likelihood Channel Estimation

To estimate gk, which is N -dimensional, BS k requires at least N independent
observations for k = 1, 2. Hence, both B1,B2 ∈ CL×N must have full column
rank. Furthermore, we require that the RIS configurations on different time in-
stances be orthogonal and contain entries on the unit circle that can be realized
using a reflecting element. These assumptions result in BH

k Bk = LIN . In classi-
cal non-Bayesian parameter estimation, the ML estimator is widely used, which
maximizes the likelihood function of the received observation over the unknown
parameter. Since the BSs have misspecified received pilot signal models, they will
instead maximize the likelihood functions obtained from the misspecified model,
leading to misspecified maximum likelihood (MML) estimators. For (2.4), the
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MML estimator can be expressed as

ĝk = argmax
gk

f(ypk;gk)

= argmax
gk

1

(πσ2
w)

L
exp

(
−
∥ypk −

√
PpBkDhk

gk∥2

σ2
w

)

= argmin
gk

∥∥∥ypk −
√
PpBkDhk

gk

∥∥∥2
=

1√
Pp

D−1
hk

(BH
k Bk)

−1BH
k ypk

=
1

L
√
Pp

D−1
hk

BH
k ypk. (2.5)

In the following subsections, we describe the behavior of this estimator for two
different choices of the Bk matrices.

Case 1: The RISs Adopt the Same Configuration Sequence

We discussed earlier that in the absence of inter-operator cooperation, it is highly
likely that the RISs will use the same sequence of configurations during the chan-
nel estimation phase, which corresponds to B1 = B2 = B.1 In this case, (2.5)
becomes

ĝk = gk +D−1
hk

Dqk
pk +

1

L
√
P p

D−1
hk

BHwpk. (2.6)

Since we consider the channels as deterministic parameters, we obtain the prob-
ability distribution

ĝk ∼ CN
(
gk +D−1

hk
Dqk

pk,
σ2
w

LPp
(DH

hk
Dhk

)−1

)
(2.7)

We notice that ĝk is biased; that is, bk ≜ E[ĝk−gk] = D−1
hk

Dqk
pk ̸= 0. The esti-

mator bias does not vanish when increasing Pp or L, and decreasing σ2
w, hence, it

is not asymptotically unbiased. This is a new instance of an extensively studied
phenomenon in the massive MIMO literature: pilot contamination [18,19]. Inter-
estingly, the RISs cause pilot contamination even between two non-overlapping
frequency bands, which has not been widely recognized in the literature so far.

1The analysis in this paper can be easily extended to the case when B1 = UB2 for some
unitary matrix U, so that configuration sequences have identical spans. It is the overlap of the
spans that can cause issues.
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Case 2: The RISs Adopt Different Configuration Sequences

In this subsection, we consider the generic case of B1 ̸= B2. To motivate the
proposed method for configuring B1 and B2, we first consider the case where the
BSs are aware of the true signal model in (2.3), and therefore can estimate both
gk and rk ≜ Dqk

pk. The resulting system model can be expressed as

yp1 =
√
P p

[
B1Dh1

B2

] [g1

r1

]
+wp1, (2.8a)

yp2 =
√
P p

[
B2Dh2 B1

] [g2

r2

]
+wp2. (2.8b)

In (2.8), a known linear transformation is applied to the parameter vector of
interest in the presence of additive noise. Consequently, the ML estimates for UE
1’s unknown channels become[

ĝ1

r̂1

]
=

1√
Pp

[
LDH

h1
Dh1 DH

h1
BH

1 B2

BH
2 B1Dh1

LIN

]−1 [
DH

h1
BH

1

BH
2

]
yp1. (2.9)

Note that in this case, the total dimension of the unknown parameter vector
is 2N , hence, at least 2N independent observations are required for the matrix
inverse to exist. The structure in (2.9) applies to UE 2 with alternated indices,
and it gives the ML estimator, which is both unbiased and efficient, since (2.8)
is a linear observation model with additive Gaussian noise [28, Theorem 7.3].
Hence, (2.9) is unbiased irrespective of other parameters such as σ2

w, L, Pp, and
it achieves the CRLB, which provides a lower bound on the MSE of any unbiased
estimator [12]. It has to be noted that when BH

1 B2 = 0, (2.9) becomes[
ĝ1

r̂1

]
=

1

L
√

Pp

[
DH

h1
Dh1

0
0 IN

]−1 [
DH

h1
BH

1

BH
2

]
yp1

=
1

L
√

Pp

[
D−1

h1
BH

1

BH
2

]
yp1. (2.10)

Note that the expression for ĝ1 in (2.10) is the same as in (2.5). This shows that
when BH

1 B2 = 0, the MML in (2.5) coincides with the ML estimator; that is, the
misspecified model is sufficient when the configuration sequences are designed to
alleviate pilot interference. The probability distribution of ĝk in this case can be
expressed as

ĝk ∼ CN
(
gk,

σ2
w

LPp
(DH

hk
Dhk

)−1

)
, (2.11)

which shows that choosing the RIS configuration sequences such that B1 and
B2 removes the bias from the MML estimator. However, the major setback
of this approach is that the minimum number of observations required for this
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channel estimation procedure is 2N instead of N , due to the fact that the 2N -
many L-dimensional columns must all be orthogonal to each other, for which
L ≥ 2N is required. Considering that the estimator bias in (2.7) does not vanish
with increasing L, this is a necessary sacrifice. Hence, it has to be noted that the
number of pilot transmissions increases linearly with the number of RISs deployed
in proximity. In the next section, data signal transmission and its estimation will
be analyzed.

MSE During Channel Estimation

We consider the MSE as the channel estimation performance metric, which is
the trace of the error covariance matrix that is derived in this section. In this
derivation, we do not assume a particular choice of B1,B2, but we utilize the
basic assumption BkB

H
k = LIN . Consequently, we use bk to denote the potential

estimator bias. We can then compute the error covariance matrix as

Σe,k = E
[
(ĝk − gk)(ĝk − gk)

H
]

= bkb
H
k +

1

LPp
E
[
D−1

hk
wpkw

H
pkD

−H
hk

]
= bkb

H
k +

σ2
w

LPp

(
Dhk

DH
hk

)−1
. (2.12)

Consequently, the trace of the error covariance matrix becomes

tr(Σe,k) = ∥bk∥2 +
σ2
w

LPp

N∑
n=1

1

|hkn|2
(2.13)

Note that for high Pp, L, and low σ2
w, the second term in (2.13) vanishes, and the

trace of the error covariance converges to ∥bk∥2 which depend on the configuration
of B1,B2:

∥bk∥2 =

{∑N
n=1

|rkn|2
|hkn|2 B1 = B2,

0 BH
1 B2 = 0.

(2.14)

This result shows that configuring the RISs such that BH
1 B2 = 0 removes the

asymptotic floor on the average MSE, which comes from the energy of the esti-
mator bias. On the other hand, when the intended RIS-BS links h1,h2 are strong
relative to the unintended and unknown overall link rk, the estimator bias will
be weaker and the cost of choosing B1 = B2 will be lower. Nevertheless, pilot
contamination results in a fundamental error floor, even if the RISs are utilized
in different bands. In the next section, we consider the estimation of data based
on the channel estimation performed in this section and analyze the consequence
of pilot contamination in this phase.
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2.4 Data Transmission

The channel estimation is followed by data transmission. We consider a data
packet with a duration shorter than the channel coherence time, therefore, the
channels acting on the transmitted data signals are the same as in the channel
estimation part. Defining the data signal transmitted by the kth UE as xk ∼
CN (0, 1), we can express the received data as

y1 =
√

Pd(h
T
1 Φ̂1g1 + qT

1 Φ̂2p1)x1 + w1, (2.15a)

y2 =
√

Pd(h
T
2 Φ̂2g2 + qT

2 Φ̂1p2)x2 + w2, (2.15b)

where wk ∼ CN (0, σ2
w) denotes the receiver noise, Pd denotes the data trans-

mission power, and the RIS configuration matrices Φ̂k are selected based on the
estimated channels to maximize the average channel gain as shown in [17, Sec. II]:

ϕ̂kn = arg(hkn) + arg(ĝkn),

Φ̂k = diag
(
e−jϕ̂k1 , . . . , e−jϕ̂kN

)
. (2.16)

However, since the BSs are unaware of the unintended reflections and base their
data estimation on channel estimates, they assume the following misspecified
received data signal models:

ŷ1 =
√

Pdh
T
1 Φ̂1ĝ1x1 + w1, (2.17a)

ŷ2 =
√
Pdh

T
2 Φ̂2ĝ2x2 + w2. (2.17b)

Introducing the notation mk ≜
√
Pd(h

T
k Φ̂kgk + qT

k Φ̂jpk) for j, k ∈ {1, 2}, j ̸= k,

and m̂k ≜
√
Pdh

T
k Φ̂kĝk, (2.15) and (2.17) can be expressed as

yk = mkxk + wk, k = 1, 2, (2.18a)

ŷk = m̂kxk + wk, k = 1, 2. (2.18b)

Based on the misspecified observation model in (2.18b), the BSs estimate xk by
using the misspecified MMSE estimator

x̂k =
m̂∗

k

|m̂k|2 + σ2
w

yk, k = 1, 2. (2.19)

In this section, we consider the MSE between xk and x̂k as the performance
metric for the data transmission. We derive the data estimation MSE for UE k
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as

E
[
|xk − x̂k|2

]
= 1 + E

[
|x̂k|2

]
− 2Re(E[xkx̂

∗
k])

= 1 + E
[
|m̂k|2(|mk|2 + σ2

w)

(|m̂k|2 + σ2
w)

2

]
− 2Re

(
E
[

m̂km
∗
k

|m̂k|2 + σ2
w

])
= 1 + E

[
|m̂k|2(|mk|2 + σ2

w)− 2Re(m̂1m
∗
1)(|m̂k|2 + σ2

w)

(|m̂k|2 + σ2
w)

2

]
= 1 + E

[
|m̂k|2(|mk|2 + σ2

w)− 2Re(m̂1m
∗
1)(|m̂k|2 + σ2

w)

(|m̂k|2 + σ2
w)

2

]
+ E

[
σ2
w(|mk|2 + σ2

w)− σ2
w(|mk|2 + σ2

w)

(|m̂k|2 + σ2
w)

2

]
= 1 + E

[
(|m̂k|2 + σ2

w)(|mk|2 + σ2
w − 2Re(m̂km

∗
k))

(m̂2
k + σ2

w)
2

]
− E

[
σ2
w(|mk|2 + σ2

w)

(m̂2
k + σ2

w)
2

]
= E

[
|mk − m̂k|2 + 2σ2

w

|m̂k|2 + σ2
w

]
− E

[
σ2
w(|mk|2 + σ2

w)

(|m̂k|2 + σ2
w)

2

]
. (2.20)

Defining ϵk ≜ mk − m̂k, (2.20) can be rewritten as

E[|xk − x̂k|2] = E
[

|ϵk|2 + 2σ2
w

|mk − ϵk|2 + σ2
w

− σ2
w(|mk|2 + σ2

w)

(|mk − ϵk|2 + σ2
w)

2

]
(2.21)

To examine the impact of pilot contamination on the data estimation performance
more clearly, we now consider channel estimation at high SNRs, so that the
estimation error only comes from the estimator bias, i.e., pilot contamination.
This happens when L or Pp is high and/or σ2

w is low, which results in that the
estimator covariances in (2.7) and (2.11) become zero. For notational convenience,
we consider the case where Pp is arbitrarily large so that limPp→∞ ĝk = gk +bk,
where

bk =

{
D−1

hk
Dqk

pk B1 = B2,

0 BH
1 B2 = 0.

(2.22)

Data MSE with Channel Estimation at High SNR

In (2.21), ϵk and mk are functions of ĝ1 and ĝ2, therefore as ĝ1 and ĝ2 converge
to their means, ϵk and mk become

mk =
√
Pd(h

T
k Φ̄kgk + qT

k Φ̄jpk), (2.23a)

ϵk =
√
Pd(q

T
k Φ̄jpk − hT

k Φ̄kbk), (2.23b)
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for j, k ∈ {1, 2} and j ̸= k. Φ̄k denotes the RIS configuration computed according
to (2.16) with ĝk = gk + bk. At high SNR, the MSE in (2.21) can be rewritten
as

MSE =
|ϵk|2 + 2σ2

w

|mk − ϵk|2 + σ2
w

− σ2
w(|mk|2 + σ2

w)

(|mk − ϵk|2 + σ2
w)

2
. (2.24)

This is a practically achievable limit since RIS-aided systems require large pilot
sequences over a narrow bandwidth, so the SNR might be larger than in the data
transmission phase.

Data MSE with Transmission at High SNR

In the previous subsection, we obtained the expression for data MSE when the
channels are estimated at a high pilot SNR, while the data transmission is done
at an arbitrary SNR. To study the case when also the data transmission a step
further, we let σ2

w → 0, which results in the limit

lim
σ2
w→0

MSE =
|ϵk|2

|mk − ϵk|2
. (2.25)

Note that the resulting expression denotes the ratio between the estimated overall
SISO channel m̂k’s power and the mismatch parameter ϵk’s power. Recall that
bk depends on which RIS pilot sequence is utilized. For B1 = B2, we can obtain
ϵk as

ϵk =
√
Pdq

T
k Φ̂jpk −

√
Pdh

T
k Φ̂kD

−1
h1

Dq1p1

=
√
Pdq

T
k Φ̂jpk −

√
Pdϕ̂kDhk

D−1
hk

Dq1
p1

=
√
Pdq

T
k Φ̂jpk −

√
Pdϕ̂kDq1

p1

=
√
Pdq

T
k Φ̂jpk −

√
Pdq

T
k Φ̂kpk

=
√
Pdq

T
k (Φ̂j − Φ̂k)pk. (2.26)

On the other hand, BH
1 B2 = 0 removes bk for k ∈ {1, 2}. Consequently, we have

ϵk =

{√
Pdq

T
k (Φ̂j − Φ̂k)pk B1 = B2,√

Pdq
T
k Φ̂jpk BH

1 B2 = 0.
(2.27)

It is possible to observe that the ϵk corresponds to only the unintended reflection
path itself when BH

1 B2 = 0. On the other hand, B1 = B2 yields an expression
depending on the difference between the two RISs’ configurations during data
transmission. Since each RIS is configured based on the channels of their respec-
tive users, it is highly unlikely that the configurations will be close. Moreover,
it has to be noted that the RIS configuration of the non-serving RIS is different
among the two cases since the channel estimates are also different.
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Table 2.1: Parameters used in the numerical results.

Parameter Value
Pp or Pd −30,−25, . . . , 40 dBm2

UE-RIS path loss −80 dB
RIS-BS path loss −60 dB

σ2
w −90 dBm
N 256
L 513

2.5 Numerical Results

In this section, numerical results are provided to demonstrate the impact of pilot
contamination in both the channel and data estimation phases. We consider
N = 256 RIS elements. First, we demonstrate the results for the trace of the
channel estimation error covariance matrix (i.e., the sum MSE). Then, for a single
set of channel realizations, we provide the data estimation MSE for different data
transmission powers. We also provide a Cumulative Distribution Function (CDF)
plot for the high-SNR data estimation MSE floors underB1 = B2 andBH

1 B2 = 0.
The list of parameters used can be found in Table 2.1.

Channel Estimation

For the channel estimation, we consider the MSE as our performance metric.
Moreover, we consider the results for a single UE, since the results for different
UEs only differ by the channel realizations. In Fig. 2.2, we plot (2.13) for
different values of Pp, and we also provide the high-SNR floor for the case where
B1 = B2. Note that at lower transmission powers, the covariance matrix of the
estimator acts dominantly, hence, both RIS configurations perform nearly the
same. However, after Pp = 20 dBm, the power of the estimator bias starts to
dominate, and the average MSE for B1 = B2 goes to the floor denoted by the
black dashed line, which is given by (2.14). On the other hand, the average
MSE for BH

1 B2 = 0 does not stop there but keeps decreasing towards zero. As
mentioned before, the MML estimators used by the BSs coincide with the true
ML estimators when the RISs are configured such that BH

1 B2 = 0.

Data Estimation

In Fig. 2.3, the data estimation MSE performance with the two RIS pilot config-
urations are analyzed when the channel estimation SNR is high. That is, (2.24)
is plotted for B1 = B2 and BH

1 B2 = 0. In addition, the case where all of the

2The results for Pp = 45, 50, 55, and 60 dBm are also demonstrated in Fig. 2.2 to display the
high SNR floor more clearly.
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Figure 2.2: Pilot transmission power versus channel estimation MSE.

channels are perfectly known is plotted to serve as the golden standard, labeled
as Perfect CSI. However, even when all the channels are perfectly known, each
RIS is assumed to be optimized according to the subscribed UE’s CSI. Note that
although the channel estimation SNR is high, B1 = B2 yields biased estimates
of g1 due to pilot contamination caused by self-interference. On the other hand,
BH

1 B2 = 0 yields the true g1 as the estimate, however, since BS 1 is unaware
of the path through the second RIS, the data estimate is biased, hence, there
is still a high data transmission SNR floor. At around Pd = 5 dBm, B1 = B2

starts to approach the high-SNR floor. On the other hand, BH
1 B2 = 0 does not

suffer from the lack of awareness of the second RIS path until around Pd = 20
dBm. Hence, Fig. 2.3 clearly shows the benefit of configuring the RIS pilot
configurations sequences orthogonally.

Note that (2.25) and (2.27) do not guarantee the superiority of BH
1 B2 = 0

over B1 = B2, since if both RISs were configured identically during the data
transmission phase, B1 = B2 would not suffer from a high-SNR data estimation
MSE floor. To demonstrate that this scenario is highly unlikely, empirical CDFs
of the MSE floors at high SNR are provided. We generate each channel according
to CN (0, IN ), and then scale them according to the path losses given in Table
2.1. The resulting CDFs are provided in Fig. 2.4. This figure is generated by
using 106 different sets of channel realizations for N = 32 RIS elements. With a
probability less then 10−6, the high-SNR floor under BH

1 B2 = 0 is much lower
than that of B1 = B2, clearly demonstrating the benefit of using orthogonal RIS
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Figure 2.3: Data transmission power versus data estimation MSE with high channel
estimation SNR.

pilot configurations over identical configurations.

2.6 Conclusions

In this paper, we have studied the impact of pilot contamination in a system
consisting of two wide-band RISs, two single-antenna UEs, and two co-located
single-antenna BSs. We have demonstrated that the presence of multiple RISs
in the same area causes pilot contamination, although the UEs are subscribed to
different operators and transmit over disjoint narrow frequency bands. To combat
this new type of pilot contamination, we proposed the use of orthogonal RIS
configurations during pilot transmission. In the numerical results, we have clearly
shown that the proposed approach eliminates pilot contamination completely,
and decreases data estimation MSE significantly. While increasing the number of
pilots to configure RISs orthogonally alleviates pilot contamination, more efficient
ways of dealing with this problem are needed in the future.
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Figure 2.4: CDF of the data-MSE floors for two RIS pilot configurations for i.i.d.
Rayleigh fading.





Chapter 3

Combating Inter-Operator Pilot
Contamination in Reconfigurable
Intelligent Surfaces Assisted
Multi-Operator Networks

Abstract

In this paper, we study a new kind of pilot contamination appearing
in multi-operator reconfigurable intelligent surfaces (RIS) assisted networks,
where multiple operators provide services to their respective served users.
The operators use dedicated frequency bands, but each RIS inadvertently
reflects the transmitted uplink signals of the user equipment devices in mul-
tiple bands. Consequently, the concurrent reflection of pilot signals during
the channel estimation phase introduces a new inter-operator pilot contam-
ination effect. We investigate the implications of this effect in systems with
either deterministic or correlated Rayleigh fading channels, specifically fo-
cusing on its impact on channel estimation quality, signal equalization, and
channel capacity. The numerical results demonstrate the substantial degra-
dation in system performance caused by this phenomenon and highlight the
pressing need to address inter-operator pilot contamination in multi-operator
RIS deployments. To combat the negative effect of this new type of pilot
contamination, we propose to use orthogonal RIS configurations during up-
link pilot transmission, which can mitigate or eliminate the negative effect
of inter-operator pilot contamination at the expense of some inter-operator
information exchange and orchestration.

3.1 Introduction

Pilot contamination is a key problem that frequently arises in wireless commu-
nication systems [18]. When multiple users use the same pilot sequences simul-

37
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taneously in the same band, due to the limited channel coherence time, the BS
cannot distinguish their channels. This typically results in poor channel esti-
mates and extra beamformed interference from or towards the UEs that reuse
the same pilot sequence. Therefore, pilot contamination adversely affects the co-
herent reception of data, and methods to mitigate pilot contamination—including
adaptive pilot reuse, power control, user grouping, multi-cell coordination, and
coded random access techniques—have been widely studied in the communication
literature [18–21,29].

In recent years, RISs have arisen as a new technology component for 6G
[22]. An RIS is a surface consisting of multiple reflecting elements that have
sub-wavelength spacing and controllable reflection properties [23]. This feature
provides partial control of the propagation environment that can lead to better
services for users, especially when their serving BS is not in their LOS. By
adjusting the impedances of the individual elements via a RIS controller, the
elements are capable of adding desired phase shifts to the reflected signals, thereby
forming reflected beams in desired directions that can significantly boost the SINR
and reduce the symbol estimation error at the receiver [22,30].

On the other hand, the addition of RISs to existing systems introduces new
design and operational challenges [31]. For example, the length of the pilot signal
required by a single UE is proportional to the number of RIS elements (e.g., tens or
hundreds), because the RIS must change its configuration to explore all channel
dimensions [17, 24]. In addition, the path loss of the reflected path through a
passive RIS is proportional to the multiplication of the path losses to and from
the RIS [25], so a larger surface is needed to achieve a decent SNR improvement.
Active RISs, on the other hand, use amplifiers to overcome the large path loss
but have the traditional issues of relays: increased power consumption, higher
cost, and additional noise [32,33]. While the aforementioned problems caused by
the RIS have been recognized [26], pilot contamination caused by the presence of
multiple RISs has not been studied in the literature.

Wireless communication systems use standardized protocols, interfaces, and
well-defined pilot sequences and codebooks to ensure inter-operability [27]. While
employing RISs in cellular networks have not been studied by the relevant stan-
dards organizations yet, it may be expected that the configuration sequences that
facilitate the deployment of RISs while maintaining interoperability will be spec-
ified. Consequently, when multiple cellular networks are deployed by different
network operators in overlapping geographical areas, the RISs may adopt iden-
tical or overlapping pilot sequences and cause pilot contamination. The number
of orthogonal pilot sequences is limited by the length of the pilot sequence, and
increasing the pilot sequence length not only creates more channel estimation
overhead but also is infeasible due to the limited coherence budget of the chan-
nel. As a consequence, the need for repeating pilot sequences comes up very often.
In this paper, we argue that when multiple RISs are deployed for the purpose
of shaping the propagation characteristics of the environment, the propagation
characteristics might change in unintended ways. For example, an RIS belonging
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to another operator might modify the propagation of a UE’s own pilot signal,
leading to pilot contamination even in the absence of any interfering signals or
intra-band pilot reuse. The underlying reason is that an RIS element—although
designed for a particular frequency—does not act as a bandpass filter, but reflects
all frequencies with varying amplitude and phase. Indeed, as pointed out in [34],
due to the lack of baseband signal processing, the RIS reflects the impinging
broadband signal with frequency-flat reflection coefficients. Therefore, in realis-
tic system models of, for example, passive RIS assisted 5G New Radio systems,
we need to take into account that the RIS inadvertently reflects the transmitted
uplink signals of the user equipment devices in multiple bands as in [35], [36].

Specifically, in this paper, we identify this new pilot contamination phe-
nomenon as a major practical challenge when multiple RIS assisted operator
networks are deployed over a geographical area, including the important practi-
cal scenario of inter-operator site sharing [37], [38, 39]. In such an environment,
a UE that transmits pilots to its serving BS via multiple RIS, which may change
their configurations simultaneously, is exposed to new pilot-related ambiguities
that have not been studied before. Since this phenomenon exacerbates the pilot
contamination problem, it is clear that pilot contamination due to the presence
of multiple RISs must be dealt with.

To the best of the authors’ knowledge, the problem of inter-operator pilot con-
tamination in RIS-aided wireless communication systems has not been addressed
before, except in the preliminary version of this manuscript [15], which assumed
deterministic rather than stochastically fading channels. In this paper, we derive
the capacity lower bound of the system under pilot contamination and imperfect
CSI assuming Rayleigh fading. Our major contributions can be summarized as
follows:

• For the case when inter-operator pilot contamination is neglected, we provide
a misspecified ML estimator under the assumption that all the channels in
the system setup are deterministic. We also derive the resulting channel
estimation MSE for different choices of the RIS configurations.

• Based on the obtained results for the channel estimation error under inter-
operator pilot contamination, we provide the data signal estimation MSE for
a misspecified MMSE estimator.

• In addition to deterministic channels, we also consider the case where the
channels are Rayleigh fading with spatial correlation. For generic channel
spatial covariances, we derive the misspecified MMSE estimator and the re-
sulting MSE.

• Based on the channel estimation error model, obtained for spatially correlated
Rayleigh fading channels, we derive a capacity lower bound given the channel
estimates. Our numerical results show that the choice of RIS configurations
during channel estimation makes a significant impact on the capacity lower
bound.
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The rest of the manuscript is organized as follows: in Section 3.2, we provide the
received signal model, in Section 3.3, we provide the misspecified ML estimator
where the inter-operator pilot contamination is neglected and the channels are
assumed to be deterministic. Section 3.4 builds on top of section 3.3 by providing
the data estimation MSE as a result of inter-operator pilot contamination. In
Section 3.5, we derive the impact of inter-operator pilot contamination in closed-
form for the case of spatially correlated Rayleigh-fading channels by considering
the channel estimation MSE as our performance metric. Since the data estima-
tion MSE has a dependence on individual channel realizations, an alternative
performance metric for data transmission is needed to capture the behavior of
fading channels. To this end, we derive the capacity lower bound under channel
side information in Section 3.6. We provide the numerical results in Section 3.7,
and conclude the manuscript in Section 3.8.

3.2 System Model

In this paper, we study the pilot contamination caused by the presence of multiple
RISs by considering the uplink of a system consisting of two wide-band RISs,
two single-antenna UEs, and two co-located single-antenna BSs. The UEs are
subscribed to different operators and use non-overlapping frequency bands. Each
RIS is dedicated to and controlled by a single operator, but both UE signals
are reflected from both RISs. In this scenario, although there is no interference
between the two UEs, both RISs affect both frequency bands.

Although the two BSs are closely located, their coupling effects are ignored
due to their casings providing enough electromagnetic shielding. For co-located
BSs, the coupling can be avoided by separating the BSs by 1.5 meters [40]. Inter-
RIS coupling is also ignored since the RISs are far apart. While the coupling
among the elements in a dense RIS affects the system behavior, it can generally
be treated as part of the spatial channel correlation. We consider arbitrary spatial
correlation in this paper and are not explicitly modeling the coupling to avoid
convoluting the notation but focus on the inter-operator pilot contamination ef-
fect. However, explicit modeling of the coupling effect among the RIS elements
can be done as in [41,42] and is recommended for future work.

In Fig. 3.1, we graphically describe the system that we consider. The com-
ponents associated with the two different operators are depicted in two different
colors: blue BS, RIS, UE and the channels belong to operator 1, while the red
ones belong to operator 2. The operators can potentially use site-sharing (as in
the figure) to reduce deployment costs but transmit over two disjoint narrow fre-
quency bands to their respective serving BSs. Each RIS hasN reflecting elements,
and is dedicated to and controlled by a single operator but affects both bands.
To focus on the fundamentals of pilot contamination, we consider an environment
where the direct UE-BS paths are blocked, while the UE-RIS and RIS-BS paths
are operational. Since the BSs and RISs have fixed deployment locations, we
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RIS 1, Φ1 RIS 2, Φ2

UE 1 UE 2

BS 1 BS 2
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p1p2

q1q2

h1 h2

Figure 3.1: The considered setup with two UEs, two RISs, and two co-located single-
antenna BSs. The blue channels correspond to frequency band 1, and the red channels
correspond to frequency band 2, subscribed by UEs 1 and 2, respectively. The desired
channels are denoted by solid lines, while the undesired channels (whose existences might
be unknown to the BSs) are denoted by dashed lines. Each channel vector isN -dimensional
because each RIS has N elements.

assume the RIS-BS channels hk ∈ CN are known, while the UE-RIS channels
gk ∈ CN are unknown and to be estimated, for k = 1, 2.

The signal transmitted by UE k reaches its serving BS through the channels
hk and gk, for k = 1, 2. Importantly, each UE’s transmitted signal is also reflected
by the non-serving operator’s RIS and parts of the reflected signal will reach the
serving BS. This effect contaminates the pilot signal reflected by the serving RIS
and we will study the implications. The phenomenon is illustrated in Fig. 3.1,
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where the resulting UE-RIS and RIS-BS channels are denoted by pk ∈ CN and
qk ∈ CN , respectively, for k = 1, 2. Defining the pilot signal of UE k as sk ∈ C,
the received signals on bands 1 and 2 at the BSs can be expressed as

yp1 =
√
Pph

T
1 Φ1g1s1 +

√
Ppq

T
1 Φ2p1s1 + wp1, (3.1a)

yp2 =
√

Pph
T
2 Φ2g2s2 +

√
Ppq

T
2 Φ1p2s2 + wp2, (3.1b)

where ypk ∈ C denotes the received signal, wpk ∼ CN (0, 1) denotes the receiver
noise for band k, and Φk = diag(e−jϕk1 , . . . , e−jϕkN ) denotes the kth RIS’s re-
flection matrix, and Pp denotes the pilot signal’s transmission power. We assume
s1 = s2 = 1 without loss of generality. When analyzing channel estimation, it is
more convenient to rewrite (3.1) as

yp1 =
√
Ppϕ

T
1 Dh1

g1 +
√
Ppϕ

T
2 Dq1

p1 + wp1, (3.2a)

yp2 =
√
Ppϕ

T
2 Dh2

g2 +
√
Ppϕ

T
1 Dq2

p2 + wp2, (3.2b)

where Dhk
and Dqk

represent the N × N diagonal matrices containing the el-
ements of hk and qk, and ϕk ∈ CN denotes the column vectors containing the
diagonal entries of Φk for k = 1, 2.

As there are N parameters in g1 and g2, at least N linearly independent
observations are needed to estimate them uniquely. To this end, we perform
L ≥ N pilot transmissions over time, and we vertically stack the received signals
to obtain

yp1 =
√
PpB1Dh1

g1 +
√

PpB2Dq1
p1 +wp1, (3.3a)

yp2 =
√

PpB2Dh2
g2 +

√
PpB1Dq2

p2 +wp2, (3.3b)

where ypk = [ypk[1], . . . , ypk[L]]
T ∈ CL denotes the sequence of received sig-

nals from the kth UE over L time instances, and the matrices B1 and B2

represent the sequence of RIS configurations over L time instances; that is,

Bk ≜
[
ϕk[1] . . . ϕk[L]

]T ∈ CL×N for k = 1, 2.

Construction of B1 and B2

We consider B1 and B2 to be orthogonal matrices, that is, BH
k Bk = LIN . Each

entry of the matrices must have a unit modulus, and there are multiple designs
that perform equally well. One way to design such matrices is to start from an
L-dimensional Discrete Fourier Transform (DFT) matrix B̃ ∈ CL×L. We need
L ≥ N to estimate all channel components. After constructing B̃, we perform
the following operation:

• For B1 = B2, we assign the sub-matrix consisting of the first N column
vectors of B̃ to both B1 and B2.
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• To obtain BH
1 B2 = 0, we need at least 2N vectors that are orthogonal to

each other, therefore, we need at least L ≥ 2N . With this in mind, we assign
the sub-matrix consisting of the first N columns of B̃ and assign it to B1.
Then we assign the sub-matrix consisting of the second N column vectors of
B̃ to B2. Consequently, for L = 2N , for example, we obtain

B̃ =
[
B1 B2

]
. (3.4)

Extension to Multiple-Antenna BSs

While we considered single-antenna base stations to focus on the multi-RIS pilot
contamination phenomenon more, it is indeed possible to consider multi-antenna
base stations. For example, suppose both base stations have M antennas. In this
case, the pilot signal received at a single time instant at the k’th base station can
be expressed as

yp =
√

Pp(HkΦkgk +QkΦjpk)sk +wk ∈ CM×1, (3.5)

where Hk,Qk ∈ CM×N denote the channel between RIS k and BS k and the
channel between RIS j and BS k, respectively. Since Hk and Qk are matrices (as
opposed to vectors used in the manuscript), it is non-trivial to make the transition
from (1) to (2). To this end, we define ϕ̄n ≜ ϕnIM×M , ϕk ≜ [ϕ̄1, . . . , ϕ̄N ] and

DHk
≜ diag(h

(1)
k , . . . ,h

(N)
k ) with h

(n)
k denoting the n’th M × 1 column of

yp =
√
Pp(ϕkDHk

gk + ϕjDQk
pk)sk +wk ∈ CM×1, (3.6)

which corresponds to eq. (3.2) in the multi-antenna BS setting. Without loss of
generality, we assume that sk = 1. After this step, we stack the M × 1 received
pilot observations over time vertically to obtain a LM × 1 collection of pilot
observations:

Yp =
√
Pp(BkDHk

gk +BjDQk
pk) +Wk ∈ CLM×1. (3.7)

This equation corresponds to (3.3) in our manuscript. Note that the ”cascaded”
channels going over each RIS in this case correspond to DHk

gk ∈ CMN×1, that
is, the true dimensions of the channels are represented. It also has to be noted
that Bk ∈ CLM×MN in this case. Compared to the original Bk matrices in our
manuscript, these Bk matrices are their Kronecker-multiplied versions, therefore,
using the same dynamics with L ≥ 2N and DFT matrices, it is possible to obtain
both B1 = B2 and BH

1 B2 = 0. Since we assume that the static channels Hk

and Qk are known, we still have N unknown channel dimensions, hence we do
not have additional complexity in configuring the RISs to estimate the unknown
channels coming from having multiple antennas at the BSs.

In the remainder of this paper, we will analyze channel estimation and the
resulting communication performance for deterministic and fading channels, re-
spectively.
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3.3 Maximum Likelihood Estimation of Deterministic
Channels

In this section, we will consider channel estimation for deterministic channels.
The same assumptions and results will then be considered in Section 3.4 for data
transmission.

We assume that gk is a deterministic and unknown channel without any known
structure. That is, gk is an N × 1 vector of complex deterministic parameters to
be estimated. In addition, we assume that hk is perfectly known. On the other
hand, the BSs do not know the existence of qk and pk. We assume that the BSs
are unable to obtain enough fading observations to construct a statistical model,
therefore, the BSs employ the classical estimation framework. In contrast, we
assume that statistics of the fading channels of interest g1 and g2 are available
in Section 3.5, and we consider h1, h2, q1, and q2 to be deterministic since
those links are between fixed deployments. On the other hand, we consider the
statistics of the fading channels p1 and p2 only for MSE analysis, and assume
that the BSs are unaware of these channels. We can denote the received signal
models assumed by the BSs as

ŷp1 =
√

PpB1Dh1g1 +wp1, (3.8a)

ŷp2 =
√

PpB2Dh2
g2 +wp2. (3.8b)

Since gk does not have a known structure and hence consists of N scalars, BS
k requires at least N independent observations to estimate it. To this end, both
B1,B2 ∈ CL×N must have full column rank. Furthermore, we require that the
RIS configurations used at different time instances are mutually orthogonal and
contain entries on the unit circle that can be realized using a reflecting element.
These assumptions result in BH

k Bk = LIN . In classical non-Bayesian parameter
estimation, the ML estimator is widely used, which maximizes the likelihood
function of the received observation over the unknown parameter. Since the
BSs have misspecified received pilot signal models, they will instead maximize
the likelihood functions obtained from the misspecified model, leading to MML
estimators. For (3.8), the MML estimator can be expressed as

ĝk = argmax
gk

f(ypk;gk)

= argmax
gk

1

(πσ2
w)

L
exp

(
−
∥ypk −

√
PpBkDhk

gk∥2

σ2
w

)

= argmin
gk

∥∥∥ypk −
√
PpBkDhk

gk

∥∥∥2 (3.9)
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=
1√
Pp

D−1
hk

(BH
k Bk)

−1BH
k ypk

=
1

L
√

Pp

D−1
hk

BH
k ypk. (3.10)

In the following subsections, we describe the behavior of this estimator for two
different choices of the Bk matrices.

Case 1: The RISs Adopt the Same Configuration Sequence

We discussed in the introduction that in the absence of inter-operator coopera-
tion, it is highly likely that the RISs will use the same standardized sequence
of configurations during the channel estimation phase, which corresponds to
B1 = B2 = B.1 In this case, (3.10) becomes

ĝk = gk +D−1
hk

Dqk
pk +

1

L
√
P p

D−1
hk

BHwpk. (3.11)

Since we consider the channels as deterministic parameters, we obtain the prob-
ability distribution

ĝk ∼ CN
(
gk +D−1

hk
Dqk

pk,
σ2
w

LPp
(DH

hk
Dhk

)−1

)
. (3.12)

We notice that ĝk is biased; that is, bk ≜ E[ĝk−gk] = D−1
hk

Dqk
pk ̸= 0. The esti-

mator bias does not vanish when increasing Pp or L, or decreasing σ
2
w. Hence, this

estimator is not asymptotically unbiased. This is a new instance of an extensively
studied phenomenon in the massive MIMO literature, namely pilot contamina-
tion [18,19]. Interestingly, the RISs cause pilot contamination even between two
non-overlapping frequency bands, which has not been recognized in the previous
literature.

Case 2: The RISs Adopt Different Configuration Sequences

In this section, we consider the generic case ofB1 ̸= B2. To motivate the proposed
method for configuring B1 and B2, we first consider the case where the BSs are
aware of the true signal model in (3.3), and therefore can estimate both gk and
rk ≜ Dqk

pk. The resulting system model can be expressed as

yp1 =
√
P p

[
B1Dh1 B2

] [g1

r1

]
+wp1, (3.13a)

yp2 =
√
P p

[
B2Dh2

B1

] [g2

r2

]
+wp2. (3.13b)

1The analysis in this paper can be easily extended to the case when B1 = UB2 for some
unitary matrix U, so that the configuration sequences have identical spans. It is the overlap of
the spans that can cause issues.



46 CHAPTER 3. PAPER B

In (3.13), a known linear transformation is applied to the parameter vector of
interest in the presence of additive noise. Consequently, the ML estimates of UE
1’s channels become[

ĝ1

r̂1

]
=

1√
Pp

[
LDH

h1
Dh1 DH

h1
BH

1 B2

BH
2 B1Dh1

LIN

]−1 [
DH

h1
BH

1

BH
2

]
yp1. (3.14)

Note that in this case, the total dimension of the unknown parameter vector
is 2N , hence, at least 2N independent observations are required for the matrix
inverse to exist.2 The structure in (3.14) applies to UE 2 with alternated indices,
and it gives the ML estimator, which is both unbiased and efficient, since (3.13)
is a linear observation model with additive Gaussian noise [28, Th. 7.3]. Hence,
(3.14) is unbiased irrespective of other parameters such as σ2

w, L, and Pp, and it
achieves the CRLB, which provides a lower bound on the MSE of any unbiased
estimator [12]. It has to be noted that when BH

1 B2 = 0, (3.14) becomes[
ĝ1

r̂1

]
=

1

L
√

Pp

[
DH

h1
Dh1

0
0 IN

]−1 [
DH

h1
BH

1

BH
2

]
yp1

=
1

L
√

Pp

[
D−1

h1
BH

1

BH
2

]
yp1. (3.15)

Note that the expression for ĝ1 in (3.15) is the same as in (3.10). This shows
that when BH

1 B2 = 0, the MML in (3.10) coincides with the ML estimator;
that is, the misspecified model is sufficient when the configuration sequences are
designed to alleviate pilot interference because the missing terms anyway vanish
in the receiver processing. The probability distribution of ĝk in this case can be
expressed as

ĝk ∼ CN
(
gk,

σ2
w

LPp
(DH

hk
Dhk

)−1

)
, (3.16)

which shows that choosing the RIS configuration sequences such that B1 and B2

remove the bias from the MML estimator. However, the major setback of this
approach is that the minimum number of observations required for this channel
estimation procedure is 2N instead of N , due to the fact that the 2N -many
L-dimensional columns must all be mutually orthogonal, for which L ≥ 2N is
required. Considering that the estimator bias in (3.12) does not vanish with
increasing L, this is a necessary sacrifice. Hence, it has to be noted that the
number of pilot transmissions increases linearly with the number of RISs deployed
in proximity.

MSE During Channel Estimation

The estimation error can be quantified through the MSE, which is the trace of
the error covariance matrix. We will derive the MSE in this section. In this

2The pseudo-inverse could be used when there are fewer observations, but it will not provide
a useful estimate.
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derivation, we do not assume a particular choice of B1 and B2, but we utilize the
basic assumption BkB

H
k = LIN . Consequently, we use bk to denote the potential

estimator bias. We can then compute the error covariance matrix as

Σe,k = E
[
(ĝk − gk)(ĝk − gk)

H
]

= bkb
H
k +

1

LPp
E
[
D−1

hk
wpkw

H
pkD

−H
hk

]
= bkb

H
k +

σ2
w

LPp

(
Dhk

DH
hk

)−1
. (3.17)

Consequently, the trace of the error covariance matrix becomes

tr(Σe,k) = ∥bk∥2 +
σ2
w

LPp

N∑
n=1

1

|hkn|2
. (3.18)

Note that for high Pp, L, and/or low σ2
w, the second term in (3.18) vanishes,

and the trace of the error covariance converges to ∥bk∥2 which depends on the
configurations of B1,B2. For the two previously considered cases, we have

∥bk∥2 =

{∑N
n=1

|rkn|2
|hkn|2 B1 = B2,

0 BH
1 B2 = 0.

(3.19)

This result shows that configuring the RISs such that BH
1 B2 = 0 removes the

asymptotic floor on the average MSE, which comes from the energy of the es-
timator bias. On the other hand, when the intended RIS-BS links h1,h2 are
strong relative to the unintended and unknown overall link rk, the estimator bias
will be weaker and the performance loss associated with choosing B1 = B2 will
be lower. Nevertheless, pilot contamination results in a fundamental error floor,
even if the RISs are utilized in different bands. In the next section, we consider
the estimation of data based on the channel estimation performed in this section
and analyze the consequence of pilot contamination in this phase.

3.4 Data Signal Estimation with Deterministic Channels

The channel estimation is followed by data transmission over the same determin-
istic channel as in Section 3.3. The receiver can use the channel estimate derived
in the last section when determining the transmitted signal. Practical channels
are never fully deterministic but might have a long coherence time. Moreover,
the impact of estimation errors is only relevant when the data packet has a mod-
est size so we cannot afford to spend much resources on pilots. For this reason,
we cannot consider the channel capacity as performance metric but will instead
consider the MSE.
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Defining the data signal transmitted by the kth UE as xk ∼ CN (0, 1), we can
express the received data as

y1 =
√
Pd(h

T
1 Φ̂1g1 + qT

1 Φ̂2p1)x1 + w1, (3.20a)

y2 =
√

Pd(h
T
2 Φ̂2g2 + qT

2 Φ̂1p2)x2 + w2, (3.20b)

where wk ∼ CN (0, σ2
w) denotes the receiver noise, Pd denotes the data trans-

mission power, and the RIS configuration matrices Φ̂k are selected based on the
estimated channels to maximize the average gain of the desired cascaded channel
as shown in [17, Sec. II]:

ϕ̂kn = arg(hkn) + arg(ĝkn),

Φ̂k = diag
(
e−jϕ̂k1 , . . . , e−jϕ̂kN

)
. (3.21)

Note that we use two different notations for the noise acting upon the pilot and
data transmissions to emphasize that they are two distinct i.i.d. random variables
which becomes an important fact when one considers data signal estimation based
on finite-SNR channel estimates. However, since the BSs are unaware of the
unintended reflections and base their data reception on the previously obtained
channel estimates, they assume the following misspecified received data signal
models:

ŷ1 =
√

Pdh
T
1 Φ̂1ĝ1x1 + w1, (3.22a)

ŷ2 =
√
Pdh

T
2 Φ̂2ĝ2x2 + w2. (3.22b)

Introducing the notation mk ≜
√
Pd(h

T
k Φ̂kgk + qT

k Φ̂jpk) for j, k ∈ {1, 2}, j ̸= k,

and m̂k ≜
√
Pdh

T
k Φ̂kĝk, (3.20) and (3.22) can be expressed as

yk = mkxk + wk, k = 1, 2, (3.23a)

ŷk = m̂kxk + wk, k = 1, 2. (3.23b)

Based on the misspecified observation model in (3.23b), the BSs estimate xk by
using the misspecified MMSE estimator

x̂k =
m̂∗

k

|m̂k|2 + σ2
w

yk, k = 1, 2. (3.24)

In this section, we consider the MSE between xk and x̂k as the performance
metric for the data transmission. We derive the data estimation MSE for UE k
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as

E
[
|xk − x̂k|2

]
= 1 + E

[
|x̂k|2

]
− 2Re(E[xkx̂

∗
k])

= 1 + E
[
|m̂k|2(|mk|2 + σ2

w)

(|m̂k|2 + σ2
w)

2

]
− 2Re

(
E
[

m̂km
∗
k

|m̂k|2 + σ2
w

])
= 1 + E

[
|m̂k|2(|mk|2 + σ2

w)− 2Re(m̂1m
∗
1)(|m̂k|2 + σ2

w)

(|m̂k|2 + σ2
w)

2

]
= 1 + E

[
|m̂k|2(|mk|2 + σ2

w)− 2Re(m̂1m
∗
1)(|m̂k|2 + σ2

w)

(|m̂k|2 + σ2
w)

2

]
+ E

[
σ2
w(|mk|2 + σ2

w)− σ2
w(|mk|2 + σ2

w)

(|m̂k|2 + σ2
w)

2

]
= 1 + E

[
(|m̂k|2 + σ2

w)(|mk|2 + σ2
w − 2Re(m̂km

∗
k))

(m̂2
k + σ2

w)
2

]
− E

[
σ2
w(|mk|2 + σ2

w)

(m̂2
k + σ2

w)
2

]
= E

[
|mk − m̂k|2 + 2σ2

w

|m̂k|2 + σ2
w

]
− E

[
σ2
w(|mk|2 + σ2

w)

(|m̂k|2 + σ2
w)

2

]
. (3.25)

Defining ϵk ≜ mk − m̂k, (3.25) can be rewritten as

E[|xk − x̂k|2] = E
[

|ϵk|2 + 2σ2
w

|mk − ϵk|2 + σ2
w

− σ2
w(|mk|2 + σ2

w)

(|mk − ϵk|2 + σ2
w)

2

]
. (3.26)

To examine the impact of pilot contamination on the data estimation performance
more clearly, we now consider channel estimation at high SNRs, so that the
estimation error only comes from the estimator bias, i.e., pilot contamination.
This happens when L or Pp is high and/or σ2

w is low, which results in the estimator
covariances in (3.12) and (3.16) becoming zero. For notational convenience, we
consider the case where Pp is arbitrarily large so that limPp→∞ ĝk = gk + bk,
where

bk =

{
D−1

hk
Dqk

pk B1 = B2,

0 BH
1 B2 = 0.

(3.27)

Data MSE with Channel Estimation at High SNR

In (3.26), ϵk and mk are functions of ĝ1 and ĝ2, therefore as ĝ1 and ĝ2 converge
to their means, ϵk and mk become

mk =
√
Pd(h

T
k Φ̄kgk + qT

k Φ̄jpk), (3.28a)

ϵk =
√
Pd(q

T
k Φ̄jpk − hT

k Φ̄kbk), (3.28b)
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for j, k ∈ {1, 2} and j ̸= k. Φ̄k denotes the RIS configuration computed according
to (3.21) with ĝk = gk + bk. At high SNR, the MSE in (3.26) can be rewritten
as

MSE =
|ϵk|2 + 2σ2

w

|mk − ϵk|2 + σ2
w

− σ2
w(|mk|2 + σ2

w)

(|mk − ϵk|2 + σ2
w)

2
. (3.29)

This is a practically achievable limit since RIS-aided systems require long pilot
sequences over a narrow bandwidth, thus, the effective SNR (proportional to
PpL) during pilot transmission can be much larger than in the data transmission
phase.

Data MSE with Transmission at High SNR

In the previous section, we obtained the expression for the data MSE when the
channels are estimated with a high pilot SNR, while the data transmission is
done at an arbitrary SNR. To study the case when also the data transmission is
conducted at a high SNR, we let σ2

w → 0, which results in the limit

lim
σ2
w→0

MSE =
|ϵk|2

|mk − ϵk|2
. (3.30)

Note that the resulting expression denotes the ratio between the estimated overall
SISO channel m̂k’s power and the mismatch parameter ϵk’s power. Recall that
bk depends on which sequence of RIS configurations is utilized. For B1 = B2,
we can obtain ϵk as

ϵk =
√
Pdq

T
k Φ̂jpk −

√
Pdh

T
k Φ̂kD

−1
h1

Dq1p1

=
√
Pdq

T
k Φ̂jpk −

√
Pdϕ̂kDhk

D−1
hk

Dq1p1

=
√
Pdq

T
k Φ̂jpk −

√
Pdϕ̂kDq1

p1

=
√
Pdq

T
k Φ̂jpk −

√
Pdq

T
k Φ̂kpk

=
√
Pdq

T
k (Φ̂j − Φ̂k)pk. (3.31)

On the other hand, BH
1 B2 = 0 removes bk for k ∈ {1, 2}. Consequently, we have

ϵk =

{√
Pdq

T
k (Φ̂j − Φ̂k)pk B1 = B2,√

Pdq
T
k Φ̂jpk BH

1 B2 = 0.
(3.32)

We notice that ϵk corresponds to only the unintended reflection path when
BH

1 B2 = 0. On the other hand, B1 = B2 yields an expression depending on
the difference between the two RISs’ configurations during data transmission.
Since each RIS is configured based on the (estimated) channels of their respective
users, it is highly unlikely that the configurations will be close. Moreover, it has
to be noted that the RIS configuration of the non-serving RIS is different between
the two cases since the channel estimates are also different.
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3.5 Channel Estimation based on Correlated Rayleigh
Fading Priors

We now switch focus to consider fading channels that can be modeled using the
Bayesian framework. In this section, we consider channel estimation and assume
that all the UE-RIS channels exhibit spatially correlated Rayleigh fading: gk ∼
CN (0,Σgk

) and pk ∼ CN (0,Σpk
). The covariance matrices Σgk

,Σpk
∈ CN×N

are generic positive semi-definite matrices. In addition, the BSs know hk perfectly
while they consider qk as deterministic and unknown channels for k = 1, 2. The
pilot transmission model assumed by the BSs for k = 1, 2 can be expressed as

ŷp1 =
√
PpB1Dh1

g1 +wp1 ∈ CL, (3.33a)

ŷp2 =
√

PpB2Dh2
g2 +wp2 ∈ CL. (3.33b)

Based on (3.33), the BSs can estimate gk via a misspecified MMSE estimator,
which can be expressed as

ĝ1 =
1√
Pp

Σg1
DH

h1
BH

1

×
(
B1Dh1Σg1D

H
h1
BH

1 +
σ2
w

Pp
IL

)−1

yp1, (3.34a)

ĝ2 =
1√
Pp

Σg2
DH

h2
BH

2

×
(
B2Dh2

Σg2
DH

h2
BH

2 +
σ2
w

Pp
IL

)−1

yp2. (3.34b)

The diagonal entries of the error covariance matrix represent the MSEs of the
corresponding channel entry. We first define rk ≜ Dqk

pk, which results in rk ∼
CN (0,Σrk) where Σrk ≜ Dqk

Σpk
DH

qk
. To simplify the representation of the

channel estimation error covariance matrix, we introduce the following notation:

Cgŷ ≜ E[gkŷ
H
pk] = E[gky

H
pk] =

√
PpΣgk

DH
hk
BH

k , (3.35a)

Cŷŷ ≜ E[ŷpkŷ
H
pk] = PpBkDhk

Σgk
DH

hk
BH

k + σ2
wIL, (3.35b)

Cyy ≜ E[ypky
H
pk] = Cŷŷ + PpBjΣrkB

H
j . (3.35c)
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With this notation, the error covariance matrix can be represented as

E[(gk − ĝk)(gk − ĝk)
H ] =

= Σgk
+CgŷC

−1
ŷŷCyyC

−1
ŷŷC

H
gŷ − 2CgŷC

−1
ŷŷC

H
gŷ

= Σgk
+CgŷC

−1
ŷŷ(Cŷŷ + PpBjΣrkB

H
j )C−1

ŷŷC
H
gŷ

− 2CgŷC
−1
ŷŷC

H
gŷ

= Σgk
−CgŷC

−1
ŷŷC

H
gŷ︸ ︷︷ ︸

error covariance for y=ŷ

+ PpCgŷC
−1
ŷŷBjΣrkB

H
j C−1

ŷŷC
H
gŷ︸ ︷︷ ︸

term coming from pilot contamination

. (3.36)

Note that the additive term in (3.36) coming from pilot contamination depends
on Σrk . If we consider the case where the channel rk does not exist, that is,
Σrk = 0, then we would obtain the error covariance in the form of a typical
MMSE estimation error covariance matrix. It is also important to address the
dependence of the term coming from pilot contamination on Pp: while the terms
Cgŷ scale with

√
Pp each, the terms C−1

ŷŷ scale with 1/Pp each, and along with
the leading Pp multiplier, we can see that Pp-dependent terms cancel each other
out, hence leaving a non-vanishing pilot contamination term.

High-SNR Channel Estimation

Now, we investigate the behavior of the error covariance matrix in (3.36) when
σ2
w is low or Pp is high. Note that the first term in (3.36) is already the error

covariance matrix for an MMSE estimator without misspecification that estimates
gk based on the observation ŷpk. Therefore, we know that this term vanishes at
high SNR. Consequently, the asymptotic error covariance matrix is governed by
the high-SNR behavior of the term coming from pilot contamination, that is

lim
σ2
w→0

E[(gk − ĝk)(gk − ĝk)
H ]

= lim
σ2
w→0

PpCgŷC
−1
ŷŷBjΣrkB

H
j C−1

ŷŷC
H
gŷ

= P 2
pΣgk

DH
hk
BH

k

(
PpBkDhk

Σgk
DH

hk
BH

k + σ2
wIL

)−1

×BjΣrkB
H
j

(
PpBkDhk

Σgk
DH

hk
BH

k + σ2
wIL

)−1
BkDhk

Σgk

= lim
σ2
w→0

Σgk
DH

hk
BH

k

(
BkDhk

Σgk
DH

hk
BH

k +
σ2
w

Pp
IL

)−1

×BjΣrkB
H
j

(
BkDhk

Σgk
DH

hk
BH

k +
σ2
w

Pp
IL

)−1

BkDhk
Σgk

. (3.37)
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Note that since BH
k Bk = LIN , the pseudoinverse corresponds to B†

k = 1
LB

H
k .

Consequently, we have

lim
σ2
w→0

E[(gk − ĝk)(gk − ĝk)
H ]

=
1

L4
Σgk

DH
hk
BH

k BkD
−H
hk

Σ−1
gk

D−1
hk

BH
k

×BjΣrkB
H
j BkD

−H
hk

Σ−1
gk

D−1
hk

BH
k BkDhk

Σgk

=
1

L2
D−1

hk
BH

k BjΣrkB
H
j BkD

−H
hk

. (3.38)

From (3.38), one can observe that the asymptotic behavior of the pilot contam-
ination depends on the choice of B1 and B2. To analyze this, we consider two
cases.

Case 1: B1 = B2

In this case, we have that BH
k Bj = LIN for j, k = 1, 2 and j ̸= k. Consequently,

(3.38) becomes

1

L2
D−1

hk
BH

k BjΣrkB
H
j BkD

−H
hk

= D−1
hk

ΣrkD
−H
hk

. (3.39)

Note that this result does not depend on L, which implies that this channel
estimation error caused by pilot contamination cannot be eliminated by increasing
the number of pilots when B1 = B2.

The RISs are configured such that BH
1 B2 = 0

In this case, BH
k Bj = 0 for k ̸= j and k, j ∈ {1, 2}. This implies that (3.38) is

zero; thus, BS k can estimate gk even without being aware of rk. Also note that
(3.38) implies that any choice of B1 and B2 that does not satisfy BH

1 B2 = 0
will result in pilot contamination while estimating correlated Rayleigh fading
channels. We can summarize the high-SNR behavior of the channel estimation
error covariance matrix as

lim
σ2
w→0

E[(gk − ĝk)(gk − ĝk)
H ]

=

{
D−1

hk
ΣrkD

−H
hk

B1 = B2,

0 BH
1 B2 = 0.

(3.40)

This result shows that in order to estimate gk reliably, it is necessary to configure
the RISs such that BH

1 B2 = 0. Note that (3.40) shows us that the cascaded
channel over the foreign operator’s RIS acts as channel estimation noise that
does not vanish with high transmission power. Additionally, the link between
the operator’s own RIS and BS counteracts the noise component. This result is
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also in line with the result obtained in Section 3.3, in (3.17), that is, when the
channels get a prior distribution, bk becomes a complex Gaussian random vector
with the covariance matrix provided in (3.40).

3.6 Capacity Lower Bound for Reliable Communication
under Imperfect CSI

In this section, we compute a lower bound on the ergodic capacity based on
the imperfect CSI obtained in the previous section via channel estimation. In
particular, we consider the impact of pilot contamination and the effect of the
signal model misspecification on the channel capacity. We derive the channel
capacity lower bound for the two cases considered in Section 3.5.

Capacity Lower Bound of a SISO Channel with Channel Side
Information

Consider a generic SISO system with the following received signal model:

y = hx+ w (3.41)

with w ∼ CN (0, σ2
w) and x ∼ CN (0, 1). Suppose that the receiver has partial

information on h, denoted by Ω. Then the capacity lower bound is [13, Eq. 2.46]

C ≥ EΩ

[
log2

(
1 +

|E[h|Ω]|2

Var(h|Ω) + Var(w|Ω)

)]
. (3.42)

This bound is valid under certain conditions, which can be listed as follows [13,
Section 2.3.5]:

• The noise w has zero-mean conditioned on Ω, that is, E[w|Ω] = 0.

• The transmitted signal x and the noise w are uncorrelated conditioned on Ω,
that is, E[xw∗|Ω] = E[x|Ω]E[w∗|Ω].

• The received signal hx and the noise w are uncorrelated conditioned on Ω,
that is, E[hxw∗|Ω] = E[hx|Ω]E[w∗|Ω].

In our setup, the data signal model for the two users can be expressed as

y1 =
√
Pd(h

T
1 Φ1g1 + qT

1 Φ2p1)x1 + w1, (3.43a)

y2 =
√

Pd(h
T
2 Φ2g2 + qT

2 Φ1p2)x2 + w2, (3.43b)

where xk ∼ CN (0, 1) denotes the transmitted data for k = 1, 2 and Pd denotes
the data transmission power. During the data transmission phase, both RISs are
configured to phase-align the cascaded channel, that is:

ϕkn = arg(hkn) + arg(ĝkn). (3.44)
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For both BSs, we consider the side information Ω as the knowledge of Φ1, Φ2,
h1, h2, ĝ1, and ĝ2. Consequently, the outer expectation in (3.42) refers to the
expectation with respect to the marginal distributions of ĝ1 and ĝ2.

Lemma 2. The system setup described by the signal model in (3.43) that uses
the RIS configurations described in (3.44) satisfies the three regularity conditions
required by the capacity bound in (3.42).

Proof. First, let us identify the h and w that we had defined in our system setup
in (3.43):

h =
√
Pd(h

T
kΦkgk + qT

kΦjpk) (3.45a)

w = wk (3.45b)

We can now prove that the conditional mean of the noise conditioned on the channel
side information, which we can describe as Ω = ĝk, is zero. Note that ĝk and wk are
independent: for B1 = B2, the less trivial case, we have that ĝk = gk+D−1

hk
rk, that

is, no dependence on the noise. At lower SNRs, the vanishing components contain
the realizations of the noise received during channel estimation, and considering the
fact that the receiver noise is white over time, that does not affect the independence
between ĝk and wk either. Therefore, E[wk|ĝk] = E[wk] = 0.

It is also straightforward to prove that the transmitted signal is uncorrelated
with the noise conditioned on Ω due to the fact that xk and wk are independent of
Ω individually. So the expression E[xkw

∗
k|Ω] does not have anything that depends

on Ω, i.e., E[xkw
∗
k|Ω] = E[xkw

∗
k] = E[xk]E[w∗

k] = E[xk|Ω]E[w∗
k|Ω] can be obtained,

proving that x and w are uncorrelated with each other conditioned on Ω.
The last point is also quite straightforward since Ω does not contain any rela-

tions between the overall channel, the receiver noise, and the transmitted signal.
Therefore it is easy to claim that this regularity condition also holds, hence the
capacity bound provided in (3.42) is applicable to our system setup.

Capacity Lower Bound with High-SNR Channel Estimates
Available at the BSs

If we assume that the channel estimation is performed at a high SNR, we can
model the channel estimation error according to (3.40). Consequently, we can
express the channel estimates in terms of the true channels and the channel
estimation error as

ĝk = gk + ek, (3.46)

where the channel estimation error is

ek =

{
0 BH

1 B2 = 0,

D−1
hk

rk B1 = B2.
(3.47)
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Hence, BS k knows gk perfectly if the RISs are configured such that BH
1 B2 = 0

during channel estimation, and ek = D−1
hk

rk when B1 = B2. Also note that
even when we have B1 = B2, the channel and the channel estimation error are
independent. Consequently, we can rewrite the overall SISO channel as

vk ≜
√
Pd(ϕ

T
kDhk

gk + ϕT
j rk). (3.48)

The mean of the overall SISO channel conditioned on the side information can
be expressed as

E[vk|Ω] =
√
Pd(ϕ

T
kDhk

E[gk|ĝk] + ϕT
j E[rk|ĝk]) (3.49)

Here, we can utilize the channel estimate structure provided by (3.46) and (3.47).
Note that when we consider E[gk|ĝk], it can be thought as estimating gk based
on observing ĝk since both gk and ek and they are independent from each other.
The same goes for computing E[rk|ĝk]. Since the gk − ĝk and rk − ĝk are jointly
Gaussian, the MMSE estimate, also known as the conditional mean estimate coin-
cides with the linear minimum mean squared error (LMMSE) estimate, therefore,
we can use the LMMSE formulation here:

E[gk|ĝk] = E[gkĝ
H
k ](E[ĝkĝ

H
k ])−1ĝk (3.50a)

E[rk|ĝk] = E[rkĝH
k ](E[ĝkĝ

H
k ])−1ĝk (3.50b)

which can be expressed more explicitly as

E[gk|ĝk] = Σgk
(Σgk

+D−1
hk

ΣrkD
−H
hk

)−1ĝk, (3.51a)

E[rk|ĝk] ={
ΣrkD

−H
hk

(Σgk
+D−1

hk
ΣrkD

−H
hk

)−1ĝk B1 = B2,

0 BH
1 B2 = 0.

(3.51b)

On the other hand, the variance of vk conditioned on ĝk can be expressed as

Var(vk|ĝk) = Pdϕ
T
kDhk

Var(gk|ĝk)D
H
hk
ϕ∗

k

+ Pdϕ
T
j Var(rk|ĝk)ϕ

∗
j + 2Re(ϕT

kDhk
E[gkr

H
k |ĝk]ϕ

∗
j )

− 2Re(ϕT
kDhk

E[gk|ĝk]E[rHk |ĝk]ϕ
∗
j ) (3.52)

where E[gk|ĝk] and E[rk|ĝk] are provided by (3.51). In addition, we can use
LMMSE formulation results for Var(gk|ĝk) and Var(rk|ĝk) which correspond to
the error covariance matrices as a result of estimating gk and rk with an LMMSE
estimator based on the observation ĝk. Consequently, these two terms can be
expressed as

Var(gk|ĝk) = E[gkg
H
k ]− E[gkĝ

H
k ](E[gkĝ

H
k ])−1E[ĝkg

H
k ], (3.53a)

Var(rk|ĝk) = E[rkrHk ]− E[rkĝH
k ](E[rkĝH

k ])−1E[ĝkr
H
k ]. (3.53b)
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Computing the expectations above and also the cross-term E[gkr
H
k |ĝk], we can

obtain the implicit expressions in (3.52) as

Var(gk|ĝk) = Σgk
−Σgk

(Σgk
+D−1

hk
ΣrkD

−H
hk

)−1Σgk
(3.54a)

Var(rk|ĝk)

= Σrk −ΣrkD
−H
hk

(Σgk
+D−1

hk
ΣrkD

−H
hk

)−1D−1
hk

Σrk (3.54b)

E[gkr
H
k |ĝk]

= ĝkĝ
H
k (Σgk

+D−1
hk

ΣrkD
−H
hk

)−1ΣrkD
−H
hk

−D−1
hk

Σrk (3.54c)

for B1 = B2 and

Var(gk|ĝk) = 0 (3.55a)

Var(rk|ĝk) = Σrk (3.55b)

E[gkr
H
k |ĝk] = 0 (3.55c)

for BH
1 B2 = 0. Obtaining Var(wk|Ω) = σ2

w is straightforward since wk is inde-
pendent from Ω. Also note that ĝk depends on the choice of B1 and B2. As a
result, the capacity lower bound can be expressed as

Ck ≥ EΩ

[
log2

(
1 +

|E[vk|Ω]|2

Var(vk|Ω) + σ2
w

)]
(3.56)

with E[vk|Ω] and Var(vk|Ω) taking values according to the choice of B1 and B2.

3.7 Numerical Results

In this section, we provide numerical examples to demonstrate the implications of
the analytical results obtained in Sections 3.3-3.6. First, we provide the numerical
results for the channel and data estimation MSEs when deterministic channels
are considered. For correlated Rayleigh fading, we demonstrate the impact of
pilot contamination on channel estimation MSE and the resulting capacity lower
bound.

Estimation Performance With Deterministic Channels

For deterministic channel estimation, we consider the normalized mean squared
error (NMSE) as our performance metric. Moreover, we consider the results
for a single UE, since the results for different UEs only differ by the channel
realizations. For the deterministic channel gk, we obtain the NMSE as

NMSE =
MSE

∥gk∥2
. (3.57)

In Fig. 3.2, we plot (3.18) for different values of Pp, and we also provide the
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Table 3.1: Parameters used in Figures 3.2 and 3.3.

Parameter Value
Pp or Pd −30,−25, . . . , 40 dBm3

UE-RIS path loss −80 dB
RIS-BS path loss −60 dB

σ2
w −90 dBm
N 256
L 513

high-SNR floor for the case where B1 = B2. The set of parameters used to
generate Fig. 3.2 and 3.3 are provided in Table 3.1. On the other hand, the
range of transmission power in Fig. 3.6 is between −10 and 60 dBm. In addition,
for Figs. 3.4, 3.5 and 3.6, we consider a 8 × 8 uniform rectangular array (URA)
geometry with λ/2 spacing in both vertical and horizontal axes. Therefore, the
parameter values N = 64 and L = 128 apply to those figures. Note that at lower
transmission powers, the covariance matrix of the estimator acts dominantly,
hence, both RIS configurations perform nearly the same. However, after Pp = 20
dBm, the power of the estimator bias starts to dominate, and the average MSE
for B1 = B2 converges to the floor denoted by the black dashed line, which is
given by (3.19). On the other hand, the average MSE for BH

1 B2 = 0 does not
stop there but keeps decreasing towards zero. As mentioned before, the MML
estimators used by the BSs coincide with the true ML estimators when the RISs
are configured such that BH

1 B2 = 0.

Data Estimation with Deterministic Channels

In Fig. 3.3, the data estimation MSE performance with the two RIS pilot con-
figurations is analyzed when the channel estimation SNR is high as in Section
3.4. That is, (3.29) is plotted for B1 = B2 and BH

1 B2 = 0. In addition, the case
where all of the channels are perfectly known is plotted to serve as the golden
standard, labeled as Perfect CSI. However, even when all the channels are per-
fectly known, each RIS is assumed to be optimized independently according to
the subscribed UE’s CSI. Note that although the channel estimation SNR is
high, B1 = B2 yields biased estimates of g1 due to pilot contamination caused
by self-interference. On the other hand, BH

1 B2 = 0 yields the true g1 as the
estimate, however, since BS 1 is unaware of the path through the second RIS, the
data estimate is biased, hence, there is still a high data transmission SNR floor.
At around Pd = 5 dBm, B1 = B2 starts to approach the high-SNR floor. On the
other hand, BH

1 B2 = 0 does not suffer from the lack of awareness of the second

3The results for Pp = 45, 50, 55, and 60 dBm are also demonstrated in Fig. 3.2 to display the
high SNR floor more clearly.
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Figure 3.2: Pilot transmission power versus the channel estimation NMSE for determin-
istic channels. Since the prior distribution of the parameter vector is not considered in the
non-random parameter estimation framework, it is highly likely to obtain NMSEs greater
than 1.

RIS path until around Pd = 20 dBm. Hence, Fig. 3.3 clearly shows the benefit
of configuring the RIS pilot configurations sequences orthogonally.

Channel Estimation Based on Correlated Rayleigh Fading Priors

In Fig. 3.4, the channel estimation performance with the two RIS pilot configura-
tions are analyzed for correlated Rayleigh fading channels. Fig. 3.4 is generated
by computing the trace of the channel estimation error covariance matrix pro-
vided in (3.36) and normalizing it by the factor of tr(Σgk

) for different Pp values
and different spatial channel correlation matrices. The spatial channel correlation
matrices are computed for isotropic scattering based on the different RIS element
geometries according to [43, Prop. 1]. Note that configuring the RISs such that
B1 = B2 causes severe problems in channel estimation, that is, the MSE in-
creases as pilot transmission power increases for all geometries while BH

1 B2 = 0
completely eliminates pilot contamination. In addition, one can note that as the
spatial correlation increases, channel estimation performance also increases since
different channel parameters contain more information from one another.

Furthermore, in Fig. 3.5, we demonstrate the two different components of the
channel estimation error in the presence of inter-operator pilot contamination.
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Figure 3.3: Data transmission power versus the data estimation NMSE for deterministic
channels with high channel estimation SNR.

While the red curve corresponds to the total NMSE and the blue curve corre-
sponds to the NMSE in the absence of pilot contamination as usual, the green
curve demonstrates the term coming from pilot contamination, as in (3.36). On
the other hand, the black dashed line represents the asymptote of the channel
estimation NMSE in the presence of pilot contamination, which is provided by
(3.40). Note that as the transmission power increases, the NMSE coming from
pilot contamination also increases up to a certain point, and converges to the
trace of (3.40) for B1 = B2 due to the fact that at very high transmission pow-
ers, the increase in pilot contamination cancels out with the increasing ability to
estimating the channel.

Capacity Lower Bound for Reliable Communication Under
Imperfect CSI

In Fig. 3.6, the capacity lower bound derived in Section 3.6 is plotted against
the data transmission power. This is performed by generating several channel
realizations and computing (3.42). Note that when B1 = B2, the capacity lower
bound stops increasing after Pd = 30 dBm while this happens at around Pd = 40
dBm for BH

1 B2 = 0 when the effect of the misspecified channel during data
transmission starts to appear. In any case, it is clear that configuring the RISs
such that BH

1 B2 = 0 almost doubles the capacity lower bound. In addition,



3.7. NUMERICAL RESULTS 61

-30 -20 -10 0 10 20 30 40 50 60
10

-3

10
-2

10
-1

10
0

10
1

Figure 3.4: Pilot transmission power versus channel estimation MSE for different RIS
geometries.
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Figure 3.5: Different components of the channel estimation NMSE
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we plotted the ergodic capacity to show the gap between the capacity bound
and the achievable gold standard. We assume that each operator configures its
RIS to maximize its user’s capacity, and they ignore the inter-operator pilot
contamination, that is:

ϕ1 = exp(−j(arg(h1) + arg(g1))), (3.58a)

ϕ2 = exp(−j(arg(h2) + arg(g2))). (3.58b)

With this in mind, we consider the overall SISO channels to be perfectly known,
which we define as

v1 ≜ hT
1 Φ1g1 + q1Φ2p1, (3.59a)

v2 ≜ hT
2 Φ2g2 + q2Φ1p2. (3.59b)

Recall that while we consider hk and qk channels to be static, we consider gk and
pk channels to be stochastic, therefore, the ergodic capacity expression contains
an expectation with respect to these channels [44]:

Ck = Egk,gj ,pk

[
log2

(
1 + Pd

|vk|2

σ2
w

)]
. (3.60)

Note that after Pd = 30 dBm, the gap in Fig. 3.6 between the ergodic capacity of
the channel and the capacity lower bound based on the channel estimates grows
significantly. At low transmission power, the dominant impeding factor is the
noise, while as we transmit at higher powers, pilot contamination, and the signal
model misspecification take over. This shows that inter-operator interference
significantly degrades the system performance.

3.8 Conclusions

In this paper, we have studied the impact of pilot contamination in a system
consisting of two wide-band RISs, two single-antenna UEs, and two co-located
single-antenna BSs. We have demonstrated that the presence of multiple RISs
in the same area causes pilot contamination, although the UEs are subscribed to
different operators and transmit over disjoint narrow frequency bands. To combat
this new type of pilot contamination, we have proposed the use of orthogonal RIS
configurations during pilot transmission. For two different sets of assumptions,
that is, deterministic and correlated Rayleigh-fading channel models, we have
derived the channel and data estimation MSEs and the capacity lower bound in
closed-form. In the numerical results, we have clearly shown that the proposed ap-
proach eliminates pilot contamination completely, and decreases data estimation
MSE significantly for deterministic channels. On the other hand, we have also
shown that the capacity lower bound almost doubles when the RISs are configured
orthogonally during the pilot transmission step. While one might argue that this
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Figure 3.6: Data transmission power versus capacity lower bound and the ergodic ca-
pacity for the two users. Note that after Pd = 30 dBm, the gap between the ergodic
capacity of the channel and the capacity lower bound based on the channel estimates
grows significantly.

doubling comes at the expense of doubling the number of pilots, the estimates
can be used for many data transmissions if the channel is static enough, resulting
in a higher overall data rate. While this study covers the channel estimation
performance in multi-operator RIS-based pilot contamination scenarios for both
deterministic and stochastic channels, further analysis is needed for parametric
channel models, which opens a new set of possibilities.





Chapter 4

Receive Beamforming Schemes to
Mitigate Inter-Operator Pilot
Contamination in RIS-Aided
MIMO Networks

Abstract

When reconfigurable intelligent surfaces (RISs) are integrated into cellu-
lar networks, they can give rise to inter-operator pilot contamination, severely
degrading network performance. While combatting this effect is possible by
orthogonalizing the RIS configurations, it requires inter-operator coordina-
tion and limits the degree of configuration freedom per RIS. Therefore, in this
work, we explore the use of receive beamforming to mitigate inter-operator
pilot contamination in RIS-aided multiple input multiple output (MIMO) sys-
tems, where two operators share infrastructure and deploy RISs to enhance
network coverage. We focus on uplink channel estimation and data transmis-
sion and propose a method in which the base stations (BSs) apply a novel kind
of receive beamforming to suppress pilot-contaminated interference. We com-
pare our proposed method with the previous RIS orthogonalization approach
and an approach that does not eliminate inter-operator pilot contamination
by formulating two schemes: In Scheme 1, the BS beamforms towards its in-
tended channel without nulling the interfering channel while orthogonal RIS
configurations mitigate pilot contamination. In Scheme 2, the BS nulls the
interfering channel, removing the need for orthogonalized RIS configurations
and halving the number of pilots. In the baseline scheme, the BS uses the same
beamformer as Scheme 1 and the same RIS configurations as Scheme 2, hence
does not eliminate pilot contamination. We assess the performance of both
schemes under different channel conditions, in terms of channel estimation
mean square error (MSE) and capacity bounds with imperfect channel state
information. Our numerical results indicate that Scheme 2 offers a superior

65
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rate at high signal-to-noise ratios (SNRs) due to fewer pilots and compara-
ble channel estimation accuracy, while Scheme 1 performs better at very low
SNRs due to capturing more energy. However, the reduced number of pilots
in Scheme 2 makes it a favorable choice for practical systems, with minimal
performance loss at low SNR. Overall, the proposed beamforming approach
effectively mitigates inter-operator pilot contamination.

4.1 Introduction

In the past few decades, MIMO systems have changed the way we communi-
cate [45], [46]. As they became prevalent due to the large-scale deployments
by multiple operators, they made a revolutionary impact on the achievable per-
formance of mobile broadband services [47]. Thanks to the multiple antennas,
wireless channels gained multiple spatial degrees-of-freedom allowing for spatial
diversity and multiplexing schemes that improve signal quality and enable to
serve multiple users using fewer resources over time and frequency [48]. In ad-
dition, the presence of multiple antennas gave rise to an effect called channel
hardening, which made the channels with more antennas less random, resulting
in lower outage probabilities and hence increased reliability [43]. As a result,
MIMO technology became a game changer in communication systems allowing
for higher spectral efficiency and increased throughput. As a result, it allowed
data-heavy use cases – such as high-quality audio and video streaming services –
to become a reality. In the 5G era, MIMO has evolved into massive MIMO with
a larger number of antennas, where the beamforming and spatial multiplexing
capabilities of MIMO systems can be further utilized [29,49,50].

Receive beamforming techniques for interference cancellation and performance
enhancement have been extensively studied in various wireless communication
scenarios. The MRC introduced in [51] gives the beamforming vector that max-
imizes the received power for a particular channel. This approach focuses the
receiver beam toward the incoming signals and adjusts its focus according to the
signals’ power levels. However, MRC does not eliminate interfering signals, which
proves to be problematic when the interfering signals are closely aligned with the
intended signals. The concept of null forming is introduced in [52] to overcome
this problem. In the context of modern wireless communication systems involv-
ing MIMO channels, beamforming to collect the maximum power from a channel
involves beamforming according to the dominant singular vectors of the channel
of interest. In contrast, null forming involves orthogonalizing the beamforming
vector to the singular vectors of the interfering channel corresponding to its non-
zero singular values. While this approach eliminates interference, it sacrifices the
power collected from the intended channel depending on how closely the intended
signal and the interference are aligned. Since both MRC and null forming depend
on the channel responses, they rely on high-quality channel estimates. It is typi-
cal to see a tradeoff between the two goals and MMSE methods are developed to
achieve a balance between them.
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While the benefits of massive MIMO systems are numerous and obvious, they
have to deal with a potential problem that may limit their performance in prac-
tice, namely pilot contamination [18]. When multiple users use the same pilot
sequences simultaneously in the same band, due to the limited channel coherence
time, the BS cannot distinguish their channels. This typically results in poor
channel estimates and extra beamformed interference from or towards the UEs
that reuse the same pilot sequence. Therefore, pilot contamination adversely af-
fects the coherent reception of data, and methods to mitigate pilot contamination
–including adaptive pilot reuse, power control, user grouping, multi-cell coordi-
nation, and coded random access techniques– have been widely studied in the
communication literature [18–21,29].

As recent works on the techno-economic aspects of communication networks
indicated [53–56], site and infrastructure sharing can help mobile network opera-
tors (MNOs) to reduce their capital and operational expenditures. For example,
reference [54] concluded that infrastructure sharing between MNOs—which can
involve mast or site sharing or co-locating cellular BSs on the roof of the same
building— in rural or urban environments may significantly reduce expenditures.
The level of cost savings due to infrastructure sharing depends on the revenue
per user, service adoption rate and the amount of existing site infrastructure.

RISs are emerging as a promising technology for enhancing wireless commu-
nication systems. RISs consist of numerous controllable reflecting elements that
can manipulate electromagnetic waves, enabling functions such as reflective beam-
forming and wireless power transfer [57]. These surfaces can be reflective, trans-
missive, or hybrid, operating at high frequencies to overcome signal attenuation
and blockage [58], [59]. RISs offer potential applications in improving spectrum
efficiency, coverage extension, and energy efficiency for wireless communications,
as well as RF sensing for security and smart spaces [60]. Recent advancements
include wave-controlled architectures that reduce hardware requirements while
maintaining adaptability [61].

Despite their potential, RISs face challenges in implementation and integra-
tion with existing systems. One of the main reasons is the increased complexity of
channel estimation due to the presence of RISs. The channel dimensions are mul-
tiplied by the number of RIS elements, hence the number of pilot transmissions
to estimate the channels increases significantly [62–64]. The RIS must change its
configuration to explore all channel dimensions [17,24]. In addition, the path loss
of the reflected path through a RIS is proportional to the multiplication of the
path losses to and from the RIS [25], so a larger surface is needed to achieve a
decent SNR improvement.

Another hurdle in front of integrating RISs into practical communication sys-
tems is a newly discovered phenomenon called inter-operator pilot contamination,
which arises from multiple operators sharing sites utilizing RISs at the same time
with identical sequences of RIS configurations. When a user’s signal gets reflected
from the other operator’s RIS towards the BS, the additional reflection path can-
not be resolved from the intended reflection path, resulting in inter-operator pilot
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contamination. The main difference between traditional pilot contamination and
inter-operator pilot contamination is that the former is caused by different users
using the same pilot sequence in the same band, while the latter is caused by the
reflections of a single user’s pilot signal from multiple RISs belonging to different
operators using neighboring bands. This problem was first identified in [15]. In
that work, however, only deterministic channels were considered, and the per-
formance metrics were not applicable to fading channels. In [16], reference [15]
was extended to fading channels, and the inter-operator pilot contamination phe-
nomenon was examined through ergodic capacity-based metrics. In [65], inter-
operator pilot contamination was studied under discrete phase shifts and various
channel conditions. While both [15] and [16] proposed to orthogonalize the RIS
configurations by doubling the number of pilot transmissions to eliminate inter-
operator pilot contamination, no practically useful methods were introduced to
address this problem to the best of the authors’ knowledge.

To address the lack of a practical solution to the inter-operator pilot contam-
ination problem, in this paper, we propose the use of receive beamforming (note
that [15] and [16] only considered single-antenna BSs) to eliminate inter-operator
pilot contamination. Our scheme allows us to eliminate this phenomenon without
doubling the number of pilots to be transmitted.

Contributions

The contributions of this paper can be summarized as follows:

• We propose a BS-based solution to the inter-operator pilot contamination
problem that completely eliminates pilot contamination and allows the oper-
ators to manage their RISs independently.

• We provide the beamforming vectors necessary for the proposed scheme in
closed form in both single- and multi-user cases.

• We compare the proposed scheme with a scheme inspired by [16] where the
RISs are jointly configured to be orthogonal, hence eliminating the inter-
operator pilot contamination at the expense of doubling the number of trans-
mitted pilots.

• For both the proposed scheme and the alternative scheme based on [16], we
provide the MMSE channel estimators and their error covariance matrices in
closed form.

• Based on the channel estimators and their covariances, we provide the capac-
ity lower bounds for both schemes under imperfect CSI, for which we provide
the mean and the variance of the channel conditioned on the channel estimates
in closed form.

• We provide numerical examples to compare the performances of two schemes
to demonstrate their advantages and disadvantages.



4.2. SYSTEM MODEL 69

Organization

We describe the system model in Section 4.2. In Section 4.4, we derive the
receive beamforming vectors for both MR beamforming and for MR beamforming
with null forming towards the interfering channels, when both RIS-BS channels
are pure-LOS. In Section 4.5, we derive the receive beamforming vectors for
unstructured RIS-BS channels based on the Singular Value Decomposition (SVD).
In Section 4.6, we derive the MMSE estimators for both schemes and derive the
error covariance matrices in closed form. Based on the analysis in this section,
we provide the capacity lower bound under imperfect CSI for both schemes in
Section 4.7, along with the ergodic capacities under perfect CSI. In Section 4.8, we
demonstrate the extension of the beamforming schemes in Section 4.5 to the case
of multiple users. We present our numerical results in Section 4.9 and conclude
the paper in Section 4.10.

4.2 System Model

We consider a single-cell system where two operators share a single site for BS
deployment. Each operator employs an M -antenna BS and serves a single user
with the help of anN -element RIS whereM ≥ N . The UEs transmit L pilots over
time to explore the different dimensions of the channel. A graphical description
of the system is provided in Fig. 4.1.

The pilot signal ypk[l] ∈ C received by the k-th operator’s BS at a single time
instant l after receive beamforming can be expressed as

ypk[l] =
√
Ppv

T
k (HkΦk[l]gk +QkΦj [l]pk)sk[l] + vT

k nk[l]︸ ︷︷ ︸
≜wk[l]

, (4.1)

for l = 1, . . . , L, where Hk,Qk ∈ CM×N denote the channel between RIS k and
BS k and the channel between RIS j and BS k, respectively. Although they have
the potential to provide additional received signal power, the channels Qk for
k = 1, 2 are considered as interference since the behavior of another operator’s
RIS cannot be controlled by the operator of interest. Note that since the BSs and
the RISs have fixed deployments, it is assumed that both Hk and Qk are known
by the BSs. sk[l] denotes the pilot transmitted by the UE subscribed to the k-th
operator at the l-th time instant, and Pp denotes the pilot transmission power.
Φk[l] = diag(e−jϕk,1[l], . . . , e−jϕk,N [l]) denotes the configuration of the RIS at the
l-th time instant belonging to the k-th operator. nk[l] ∈ CM×1 ∼ CN (0, σ2

wIM )
denotes the noise in the receiver. vk ∈ CM×1 denotes the receive beamforming
vector employed by the k-th operator with ∥vk∥ = 1. Note that wk[l] = vT

k nk[l] ∼
CN (0, σ2

w) since ∥vk∥ = 1. To express (4.1) in a more compact form, we define
h̃T
k ≜ vT

k Hk and q̃T
k ≜ vT

k Qk, resulting in

ypk[l] =
√

Pp(h̃
T
kΦk[l]gk + q̃T

kΦj [l]pk)sk[l] + wk[l]. (4.2)
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RIS 1, Φ1 RIS 2, Φ2

UE 1 UE 2

BS 1 BS 2

g1 g2

p1p2

q1q2

h1 h2

Figure 4.1: The considered setup with two UEs, two RISs, and two co-locatedM -antenna
BSs. The blue channels correspond to frequency band 1, and the red channels correspond
to frequency band 2, subscribed by UEs 1 and 2, respectively. The desired channels are
denoted by solid lines, while the undesired channels (whose existences might be unknown
to the BSs) are denoted by dashed lines. Each channel vector is N -dimensional because
each RIS has N elements.
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To obtain a more useful form of (4.2), we define Dh̃k
= diag(h̃k1, . . . , h̃kN ) ∈

CN×N , Dq̃k
= diag(q̃k1, . . . , q̃kN ) ∈ CN×N , ϕk[l] =

[
e−jϕk,1[l] . . . e−jϕk,N [l]

]T
,

and rewrite (4.2) as

ypk[l] =
√

Pp(ϕ
T
k [l]Dh̃k

gk + ϕT
j [l]Dq̃k

pk)sk[l] + wk[l], (4.3)

for l = 1, . . . , L. Without loss of generality, we can pick sk[l] = 1 for l = 1, . . . , L,
and vertically stack multiple pilot transmissions over time to obtain

ypk =
√
Pp(BkDh̃k

gk +BjDq̃k
pk) +wk ∈ CL×1, (4.4)

where Bk = [ϕ1[1], . . . ,ϕ1[L]]
T ∈ CL×N denotes the vertically stacked RIS con-

figurations over time. It has to be noted that (4.4) is very similar to [16, Eq. 3],
where the problem of inter-operator pilot contamination is introduced. In [16],
however, this problem was treated in a single-antenna BS setting and was miti-
gated by choosing orthogonal RIS configurations at the cost of doubling the pilot
transmission overhead. In this manuscript, we look into how receive beamforming
at a multi-antenna BS can be used to address this problem. In the next section,
we formulate the channel estimation problem and demonstrate how the use of
multiple RISs by different operators causes inter-operator pilot contamination.

4.3 Problem Formulation

Based on (4.4), the BS operator k aims to estimate gk ∼ CN (0,Σgk
) and pk ∼

CN (0,Σpk
). To this end, the BS employs the MMSE estimator. To express the

estimator in a compact form, we define the following covariance matrices:

Cgy = E[gky
H
pk] ∈ CN×L, (4.5a)

Cpy = E[pky
H
pk] ∈ CN×L, (4.5b)

Cyy = E[ypky
H
pk] ∈ CL×L. (4.5c)

As a result, the MMSE estimators for gk and pk become

ĝk = CgyC
−1
yyypk, (4.6a)

p̂k = CpyC
−1
yyypk. (4.6b)

The resulting error covariances can be expressed as

Σegk
= E[(gk − ĝk)(gk − ĝk)

H ] = Σgk
−CgyC

−1
yyC

H
gy, (4.7a)

Σepk
= E[(pk − p̂k)(pk − p̂k)

H ] = Σpk
−CpyC

−1
yyC

H
py. (4.7b)

Note that in the absence of pilot contamination, the covariance matrices of ĝk

and p̂k approach to Σgk
and Σpk

as Pp → ∞. Consequently, Σegk
and Σepk

approach to 0 as Pp → ∞, so the estimation will be error-free.
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As shown in [16], inter-operator pilot contamination arises when BH
1 B2 ̸= 0.

In this section, we will consider the special case B1 = B2 = B for demonstration
purposes. As a result, we can explicitly express the covariance matrices we defined
in (4.5) as

Cgy =
√

PpΣgk
DH

hk
BH , (4.8a)

Cpy =
√

PpΣpk
DH

qk
BH , (4.8b)

Cyy = PpB(Dhk
Σgk

DH
hk

+Dqk
Σpk

DH
qk
)BH + σ2

wIL. (4.8c)

The B and BH terms can be inserted inside the inversion using their pseudoin-
verses. As a result, the estimator covariances in explicit form can be expressed
as

Σĝk
= Σgk

DH
hk

(
Dhk

Σgk
DH

hk
+Dqk

Σpk
DH

qk
+

σ2
w

Pp
IL

)−1

×Dhk
Σgk

, (4.9a)

Σp̂k
= Σpk

DH
qk

(
Dhk

Σgk
DH

hk
+Dqk

Σpk
DH

qk
+

σ2
w

Pp
IL

)−1

×Dqk
Σpk

. (4.9b)

If we take the limit as Pp → ∞, we obtain

Σĝk
= Σgk

DH
hk

(
Dhk

Σgk
DH

hk
+Dqk

Σpk
DH

qk

)−1
Dhk

Σgk
, (4.10a)

Σp̂k
= Σpk

DH
qk

(
Dhk

Σgk
DH

hk
+Dqk

Σpk
DH

qk

)−1
Dqk

Σpk
. (4.10b)

Note that in both cases, the estimator covariances fail to approach the parameter
covariances due to inter-operator pilot contamination. That is, limPp→∞ Σĝk

̸=
Σgk

and limPp→∞ Σp̂k
̸= Σpk

. To overcome this, we either have to pick BH
1 B2 =

0 so that both covariances converge to their parameter covariances or we have to
pick vk such that one of h̃k and q̃k become 0. Nulling the latter is preferable as
h̃k goes through the operator’s own RIS, whose configuration is controllable. In
Sections 4.4 and 4.5, we look into the problem of designing vk depending on the
structures of Hk and Qk. Then, in Section 4.6, we will provide the asymptotic
analysis of the estimators’ behavior when pilot contamination is eliminated.

4.4 Receive Beamforming for Pure-LOS RIS-BS Channels

In this section, we look into how receive beamforming can be utilized to overcome
inter-operator pilot contamination when both Hk and Qk exhibit a pure LOS
structure. We denote the angle of departure (AoD) and AoA for Hk and Qk

as θAoD
Hk

, θAoA
Hk

, θAoD
Qk

, and θAoA
Qk

, respectively. In addition, we denote the array
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steering vectors for the k-th BSs and RISs as aBS
k (·) : R 7→ CM×1 and aRIS

k (·) :[
−π

2 ,
π
2

]
× [0,+∞) 7→ CN×1. Then, we can express Hk and Qk as

Hk =
√
αHk

e−jβHkaBS
k (θAoA

Hk
, λk)a

RIS
k

H
(θAoD

Hk
, λk), (4.11a)

Qk =
√
αQk

e−jβQkaBS
k (θAoA

Qk
, λk)a

RIS
j

H
(θAoD

Qk
, λk), (4.11b)

where αHk
and αQk

denote the path loss coefficients for the channels Hk and Qk,
respectively, and βHk

and βQk
denote the phase shifts caused by the propagation

delays over the channelsHk andQk, respectively. For simplicity, we consider ULA
structures for all BSs and RISs, however, it has to be noted that the analysis in
this section can be extended to any array geometry.1 Hence, we can express the
steering vectors in (4.11) as

aBS
k (θ, λ) =

[
1 e−j2π

dk
λ sin θ . . . e−j2π

dk
λ (M−1) sin θ

]T
, (4.12a)

aRIS
k (θ, λ) =

[
1 e−j2π

dk
λ sin θ . . . e−j2π

dk
λ (N−1) sin θ

]T
, (4.12b)

where dk denotes the inter-element spacing used by the k-th operator and θ is
angle measured from the broadside direction.

Aligning the Beam with the Intended Channel

Among the RIS-BS channels, note that Hk is the intended channel for reception.
In contrast, Qk is the interfering channel causing the inter-operator pilot con-
tamination as it is the link between the intended operator’s BS and the other
operator’s RIS. This channel is considered as interference as it involves a RIS
that is not controllable by the operator of interest. To align with the intended
channel, the following receive beamforming vector must be used:

vT
k,A =

1√
M

aBS
k

H (
θAoA
Hk

, λk

)
. (4.13)

As a result, the following equivalent Multiple-input single-output (MISO) chan-
nels arise:

h̃k =
√
MαHk

e−jβHkaRIS
k

∗ (
θAoD
Hk

, λk

)
, (4.14a)

q̃k =

√
αQk

M
e−jβQk aBS

k

H
(θAoA

Hk
, λk)a

BS
k

(
θAoA
Qk

, λk

)︸ ︷︷ ︸
≜ηk

× aRIS
j

∗
(θAoD

Qk
, λk). (4.14b)

1This can be done by considering the relevant array steering vector and applying the formulae
accordingly.
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This beamforming vector aligns the BS’s reception with Hk. However, some
interference will remain from Qk as there is no null forming in that direction;
that is, ηk will be non-zero. In the next subsection, we propose a method to
remove this residual interference.

Aligning with the Intended Channel While Nulling the
Interfering Channel

To combat the problem of residual interference, we can choose the receive com-
bining to place a null towards Qk by using orthogonal projection. We can first
beamform towards Hk, then subtract the correlated component to Qk. We can
achieve this as follows:

ṽT
k,B = aBS

k

H
(θAoA

Hk
, λk)− ηk

aBS
k

H
(θAoA

Qk
, λk)

∥aBS
k (θAoA

Qk
, λk)∥2

. (4.15)

Note that the resulting beamforming vector in (4.15) will have a different l2 norm
than 1. To normalize it, we need to multiply it with 1

∥ṽT
k,B∥ , which results in

vT
k,B =

1

∥ṽT
k,B∥

ṽT
k,B , (4.16)

where ∥ṽk,B∥2 = M − |ηk|2
M . To express (4.14) for vT

k,B , we need to compute

vT
k,Ba

BS
k (θAoA

Hk
) and vT

k,Ba
BS
k (θAoA

Qk
). These can be expressed as follows:

vT
k,Ba

BS
k (θAoA

Hk
) =

√
M − |ηk|2

M
, (4.17a)

vT
k,Ba

BS
k (θAoA

Qk
) =

√
1

M − |ηk|2
M

(ηk − ηk) = 0. (4.17b)

Note that vT
k,B completely eliminates the interference coming from Qk and hence

the inter-operator pilot contamination. On the other hand, the gain from Hk

is multiplied by a factor of
√
1− |ηk|2

M2 ∈ [0, 1]. This factor takes the value 0

when |ηk| = M and 1 when ηk = 0. This implies that when the receiver steering
vectors of Hk and Qk are orthogonal, there is no loss in the gain from Hk, and
vk,A and vk,B are equivalent. On the other hand, if |ηk| = M and hence the
receive steering vectors are fully correlated, then vk,B nullforms towards both
channels and vk,A beamforms towards both channels. The former case is the
best-case scenario, while the latter is the worst-case scenario, i.e., when inter-
operator pilot contamination cannot be eliminated. A summary of the resulting
correlations can be found in Table 4.1. As a result, we can express the effective
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Table 4.1: Summary of correlations between AoA steering vectors and the two beamform-
ing vectors where vk,A is the beamforming vector maximizing the gain from the intended
channel, and vk,B is the beamforming vector resulting from placing nulls into the first
beamformer.

aBS
k (θAoA

Hk
) aBS

k (θAoA
Qk

)

vT
k,A

√
M ηk

vT
k,B

√
M − |ηk|2

M 0

MISO channels as follows:

h̃k =

√
M − |ηk|2

M

√
αHk

e−jβHkaRIS
k (θAoD

Hk
, λk), (4.18a)

q̃k = 0. (4.18b)

Note that for pure-LOS RIS-BS channels, we can explicitly use theDoA! (DoA!)
information to construct our receive beamforming vector. However, it is not
always possible to keep track of all reflections in the environment spatially in the
presence of multiple dominant paths. To this end, a more generic approach has
to be taken. To this end, the structural assumptions on the channels have to be
replaced with a more generic approach and SVD analysis has to be formed. We
demonstrate this in the next section.

4.5 Receive Beamforming for Unstructured RIS-BS
Channels

In this section, we look into how receive beamforming can be utilized to overcome
inter-operator pilot contamination when neither Hk nor Qk exhibits any partic-
ular structure. Unstructured MIMO channels can be expressed as a weighted
sum of rank-1 matrices, which can be done by SVD. The singular values are the
weights of the rank-1 matrices, and the left and right singular vectors correspond
to the vectors forming the outer product. That is, for the SVD

A = UΣVH ∈ CM×N , (4.19)

we have that A =
∑N

k=1 σkukv
H
k . We already know how to treat rank-1 channels

for beamforming purposes from Section 4.4. To apply the same principles, we
need to identify the dominant rank-1 channel within Hk, and the non-zero rank-
1 components of Qk, for which we need to take their SVDs. Suppose that Hk

and Qk have the following SVDs:

Hk = ΓkΣkΥ
H
k , (4.20a)

Qk = ∆kΞkΩ
H
k . (4.20b)
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We denote the singular vectors as Γk =
[
γk,1 . . . γk,M

]
∈ CM×M , ∆k =[

δk,1 . . . δk,M
]

∈ CM×M , Υk =
[
υk,1 . . . υk,N

]
∈ CN×N , and Ωk =[

ωk,1 . . . ωk,N

]
∈ CN×N . Denote the singular values of H as σ1, . . . , σN and

those of Q as ξ1, . . . , ξN .

Aligning the Beam with the Intended Channel

To align our reception with Hk using a vector vk, we need to align vk with the
left singular vector of Hk corresponding to the largest singular value. Let us
denote this singular vector as γk,C . Then, we set vk as

vT
k,C = γH

k,C . (4.21)

Based on this selection of the beamforming vector, the effective MISO channels
become

h̃T
k = σk,Cυ

H
k,C , (4.22a)

q̃T
k = γH

k,CQk, (4.22b)

where σk,C is the largest singular value of Hk and υk,C is the corresponding right
singular vector.

Beamforming Towards the Intended Channel While Null
Forming Towards the Interfering Channel

While beamforming according to the largest singular value of the intended channel
Hk yields the maximum gain possible, it has to be noted that this scheme does
not remove the interference coming fromQk, which causes the inter-operator pilot
contamination. However, this interference has to be removed to obtain reliable
channel estimates. To this end, we consider removing the components correlated
to the singular vectors of Qk corresponding to non-zero singular values. Suppose
that Qk has R ≤ N non-zero singular values. Then, we need to orthogonalize vk

to δk,1, . . . , δk,R. To this end, we can subtract the orthogonal projections of the
singular vectors of Qk on γk,C recursively. That is,

ṽ
(0)T

k,D = γH
k,C ,

ṽ
(1)T

k,D = ṽ
(0)T

k,D −
δHk,1ṽ

(0)
k,D

∥δk,1∥2
δHk,1,

ṽ
(2)T

k,D = ṽ
(1)T

k,D −
δHk,2ṽ

(1)
k,D

∥δk,2∥2
δHk,2,

...

ṽ
(R)T

k,D = ṽ
(R−1)T

k,D −
δHk,Rṽ

(R−1)
k,D

∥δk,R∥2
δHk,R. (4.23)
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Next, we normalize (4.23) to obtain the beamforming vector towards Hk that
also nullforms towards Qk as

vk,D =
1

∥ṽk,D∥
ṽ
(R)
k,D. (4.24)

4.6 Channel Estimation based on Correlated Rayleigh
Fading Priors

Since Hk and Qk are already known at the BS, the BS aims to estimate gk

and pk for k = 1, 2. Since the beamforming vectors vk are also known by the
BSs, the effective RIS-BS MISO channels h̃k and q̃k are also known. Sections
4.4 and 4.5 focus on shaping the channels h̃k and q̃k using receive beamforming.
Specifically, when null forming towards Qk is applied, the effect of the unintended
path through the other operator’s RIS is essentially removed. In [16, Sec. V],
a detailed analysis of the channel estimation covariances for a model equivalent
to (4.4) is provided. To investigate the impact of RIS configurations on inter-
operator pilot contamination, in this paper, we consider three scenarios:

1. The user transmits L = 2N pilots. The operators configure their RISs such
that BH

1 B2 = 0, and both operators beamform towards Hk’s without null
forming towards Qk’s. For conciseness, we will call this Scheme 1.

2. The user transmits L = N pilots. The operators configure their RISs such
that B1 = B2, and both operators beamform towards Hk’s and nullform
towards Qk’s. For conciseness, we will call this Scheme 2.

3. In the baseline scheme, the user transmits L = N pilots. The operators con-
figure their RISs such that B1 = B2, and both operators beamform towards
Hk’s without null forming towards Qk’s. For conciseness, we will call this the
baseline scheme.

For each scenario, we provide the resulting channel estimation error covariances
to evaluate the data communication performance under imperfect CSI later on.

Scheme 1

In this scheme, the receive beamforming captures the maximum energy from the
intended channel, but it does not suppress interference. However, the interference
is canceled by separating RIS configuration sequences, which is enabled by dou-
bling the number of transmitted pilots and picking BH

1 B2 = 0. Consequently,
using this scheme, the following received pilot signal models arise:

yp1 =
√

Pp(B1Dh̃1
g1 +B2Dq̃1

p1) +w1 ∈ CL×1, (4.25a)

yp2 =
√

Pp(B2Dh̃2
g2 +B1Dq̃2p2) +w2 ∈ CL×1, (4.25b)

for L ≥ 2N .
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Scheme 2

In this scheme, the receive beamforming captures the maximum energy from the
intended channel while suppressing the interference from Qk. This interference
suppression by null forming causes the beamformer to capture less energy from
Hk. On the other hand, it is no longer necessary to orthogonalize the sequences
of RIS configurations – and hence to double the number of transmitted pilots
– since inter-operator pilot contamination is removed by receive beamforming.
Therefore, this scheme configures the RISs without orthogonalizing them to each
other, that is, B1 = B2. This approach uses half as many pilot transmissions as
Scheme 1. Consequently, the following received pilot signal models arise:

yp1 =
√
PpB1Dh̃1

g1 +w1 ∈ CL×1, (4.26a)

yp2 =
√
PpB2Dh̃2

g2 +w2 ∈ CL×1, (4.26b)

for L ≥ N .

Baseline Scheme

In this scheme, the receive beamforming is done as in Scheme 1. Unlike Scheme
1, however, the interference is not canceled by orthogonalizing the RISs, and
B1 = B2 is adopted as in Scheme 2, but without null forming. Consequently, the
following received pilot signal models arise:

yp1 =
√

Pp(B1Dh̃1
g1 +B2Dq̃1

p1) +w1 ∈ CL×1, (4.27a)

yp2 =
√

Pp(B2Dh̃2
g2 +B1Dq̃2

p2) +w2 ∈ CL×1, (4.27b)

for L ≥ N .

Impact of choice of scheme on MMSE Channel Estimation
Performance

In Section 4.3, we had demonstrated the channel estimation MSEs. The discussion
so far impacts the MSE by the following means:

• The choice of scheme affects Cyy as the path over the other operator’s RIS
is nulled when nullforming is applied.

• The gains of h̃k and q̃k are affected by how beamforming is carried out.

Consequently, the result of (4.7) changes depending on which scheme is adopted.
Next, we consider the asymptotic behavior of the estimators’ covariances for
Scheme 1 and the baseline scheme to demonstrate the impact of inter-operator
pilot contamination.
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Asymptotic Behavior of Estimator Covariances

For all schemes, the estimator covariances can be expressed as

Σĝk
= CgyC

−1
yyC

H
gy, (4.28a)

Σp̂k
= CpyC

−1
yyC

H
py. (4.28b)

Note that

lim
Pp→∞

1

Pp
Cyy = BkDhk

Σgk
DH

hk
BH

k +BjDqk
Σpk

DH
qk
BH

j , (4.29)

which then translates to

lim
Pp→∞

Σĝk
= Σgk

DH
hk
BH

k

×
(
BkDhk

Σgk
DH

hk
BH

k +BjDqk
Σpk

DH
qk
Bj

)−1
BkDhk

Σgk
, (4.30a)

lim
Pp→∞

Σp̂k
= Σpk

DH
qk
BH

j

×
(
BkDhk

Σgk
DH

hk
BH

k +BjDqk
Σpk

DH
qk
Bj

)−1
BjDqk

Σpk
. (4.30b)

For Scheme 1, if we insert Bk and BH
k inside the matrix inversion using their

pseudoinverses, we get

lim
Pp→∞

(BH
k Bk)

−1BH
k CyyBk(B

H
k Bk)

−1 = Dhk
Σgk

DH
hk
, (4.31a)

lim
Pp→∞

(BH
j Bj)

−1BH
j CyyBk(B

H
j Bj)

−1 = Dqk
Σpk

DH
qk
, (4.31b)

since BH
1 B2 = 0. Observe that this yields

lim
Pp→∞

Σĝk
= Σgk

DH
hk
(Dhk

Σgk
DH

hk
)−1Dhk

Σgk
= Σgk

, (4.32a)

lim
Pp→∞

Σp̂k
= Σpk

DH
qk
(Dqk

Σpk
DH

qk
)−1Dqk

Σpk
= Σpk

. (4.32b)
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In contrast, since B1 = B2 for the baseline scheme, we obtain the results
shown in in Section 4.3. The resulting asymptotic covariances of the estimators
are summarized in (4.33).

lim
Pp→∞

Σĝk
=


Σgk

for Scheme 1,

Σgk
DH

hk

(
Dhk

Σgk
DH

hk
+Dqk

Σpk
DH

qk︸ ︷︷ ︸
pilot contam.

)−1

Dhk
Σgk

for the baseline,

(4.33a)

lim
Pp→∞

Σp̂k
=


Σpk

for Scheme 1,

Σpk
DH

qk

(
Dhk

Σgk
DH

hk︸ ︷︷ ︸
pilot contam.

+Dqk
Σpk

DH
qk

)−1

Dqk
Σpk

for the baseline.

(4.33b)

In Section 4.7, the statistics of the effective channel conditioned on the channel
estimates will be important for determining the lower bound for channel capacity.

4.7 Capacity Lower Bound for Reliable Communication
Under Imperfect CSI

While the previous section demonstrates the impact of removing pilot contam-
ination on the channel estimation performance, examining the benefits of this
for data transmission performance is also important. To this end, we compute a
lower bound on the ergodic capacity based on the imperfect CSI obtained in the
previous section via uplink pilot transmission in this section. In particular, we
consider the channel capacity for the two schemes we have specified in Section
4.6. We first recall important results on the relation between channel capacity
and CSI for SISO channels, which will be useful in the sequel.

Capacity Lower Bound of a SISO Channel with Channel Side
Information

Consider a generic SISO system with the following received signal model:

y = hx+ w. (4.34)

Suppose that the receiver has partial information on h, denoted by Ω. Then the
capacity lower bound is [13, Eq. 2.46]

C ≥ EΩ

[
log2

(
1 +

|E[h|Ω]|2

Var(h|Ω) + Var(w|Ω)

)]
. (4.35)
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This bound is valid under three conditions: E[w|Ω] = 0, E[xw∗|Ω] = E[x|Ω]E[w∗|Ω],
and E[hxw∗|Ω] = E[hx|Ω]E[w∗|Ω] [13, Section 2.3.5].

Capacity Lower Bound

To maximize gain over the intended channels, the operators configure the RISs
based on their channel estimates. That is,

ϕ̂kn = arg(hkn) + arg(ĝkn),

Φ̂k = diag
(
e−jϕ̂k1 , . . . , e−jϕ̂kN

)
, (4.36)

where arg(·) denotes the angle (or argument) of the complex number.

Scheme 1

When the scheme described in Section 4.6 is used during channel estimation
and the beamforming vector is left unchanged throughout data transmission, the
following received data signal model arises:

y1 =
√

Pd(h̃
T
1 Φ1g1 + q̃T

1 Φ2p1)x1 + w1, (4.37a)

y2 =
√

Pd(h̃
T
2 Φ2g2 + q̃T

2 Φ1p2)x2 + w2. (4.37b)

For this scheme, we have to consider both paths and the estimates of both gk

and pk. Therefore, we should define the overall SISO channel as

vk ≜
√
Pd(h̃

T
k Φ̂kgk + q̃T

k Φ̂jpk). (4.38)

To derive the capacity bound, we need to identify the available channel side
information Ω. For this scheme, we estimate both gk and pk, therefore, we can
deduce that Ω is ĝk and p̂k. Consequently, the expressions we have to evaluate
to obtain the capacity lower bound are E[vk|ĝk, p̂k] and Var(vk|ĝk, p̂k). First,
consider the conditional mean of the overall SISO channel:

E[vk|ĝk, p̂k] =√
Pd(h̃

T
k Φ̂kE[gk|ĝk, p̂k] + q̃T

k Φ̂jE[pk|ĝk, p̂k]). (4.39)

Note that since BH
1 B2 = 0, the estimation of gk and pk were separated in the

channel estimation step. Therefore, gk and p̂k are independent. As a result, we
can simplify (4.39) as

E[vk|ĝk, p̂k] =
√

Pd(h̃
T
k Φ̂kE[gk|ĝk] + q̃T

k Φ̂jE[pk|p̂k]). (4.40)

What remains is to evaluate E[gk|ĝk] and E[pk|p̂k]. To this end, we recall that
the MMSE estimator is the conditional mean estimator, that is, the expectations
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of interest are the MMSE estimates of gk based on ĝk and pk based on p̂k,
respectively. Since the gk–ĝk and pk–p̂k pairs are jointly Gaussian, the MMSE
estimates are equivalent to the LMMSE estimates in both cases. As a result, we
can evaluate these expectations as follows:

E[gk|ĝk] = ĝk,

E[pk|p̂k] = p̂k, (4.41)

since the channel estimation error is independent of the channel itself and is
complex Gaussian. Next, we shall consider Var(vk|ĝk, p̂k). We can express this
as

Var(vk|ĝk, p̂k) = Var
(√

Pd(h̃
T
k Φ̂kgk + q̃T

k Φ̂jpk)|ĝk, p̂k

)
,

= Pdh̃
T
k Φ̂k Var(gk|ĝk, p̂k)Φ̂

H
k h̃∗

k

+ Pdq̃
T
k Φ̂j Var(pk|ĝk, p̂k)Φ̂

H
j q̃∗

k

+ 2Pd Re
{
h̃kΦ̂k Cov(gk,pk|ĝk, p̂k)︸ ︷︷ ︸

=0

Φ̂H
j q̃∗

k

}
. (4.42)

Note that gk is independent from p̂k, hence we can simplify (4.42) as

Var(vk|ĝk, p̂k) = Pdh̃
T
k Φ̂k Var(gk|ĝk)Φ̂

H
k h̃∗

k

+ Pdq̃
T
k Φ̂j Var(pk|p̂k)Φ̂

H
j q̃∗

k. (4.43)

Then, we can use the same MMSE estimation properties to evaluate Var(gk|ĝk)
and Var(pk|p̂k), which results in

Var(gk|ĝk) = E[gkg
H
k ]− E[gkĝ

H
k ](E[ĝkĝ

H
k ])−1E[ĝkg

H
k ],

= Σgk
−CgyC

−1
yyC

H
gy, (4.44a)

Var(pk|p̂k) = E[pkp
H
k ]− E[pkp̂

H
k ](E[p̂kp̂

H
k ])−1E[p̂kp

H
k ],

= Σpk
−CpyC

−1
yyC

H
py. (4.44b)

Note that the analysis for Scheme 1 can be applied to the baseline scheme by
adjusting the RIS configurations.

Scheme 2

When the scheme described in Section 4.6 is used during channel estimation
and the beamforming vector is left unchanged throughout data transmission, the
following received data signal model arises:

y1 =
√

Pdh̃
T
1 Φ1g1x1 + w1, (4.45a)

y2 =
√
Pdh̃

T
2 Φ2g2x2 + w2. (4.45b)
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For the signal model in (4.37), it is shown in [16, Lemma 1] that the conditions
for the bound in (4.35) to hold are satisfied. The same can be shown for (4.45)
following the same steps.

In this scheme, we only estimate gk, therefore, the channel side information
Ω corresponds to ĝk. We can express this channel estimate as

ĝk = gk + ek, (4.46)

where ek ∼ CN (0,Σek
) with Σek

computed according to (4.7). To compute the
capacity bound, we first have to define the overall SISO channel, that is,

vk ≜
√

Pdh̃
T
k Φ̂kgk. (4.47)

Then, we should formulate its mean conditioned on gk, corresponding to the
channel side information Ω in (4.35):

E[vk|ĝk] =
√
Pdh̃

T
k Φ̂kE[gk|ĝk] =

√
Pdh̃

T
k Φ̂kĝk, (4.48)

using the same LMMSE idea as before. Next, we have to evaluate Var(vk|ĝk),
which can be expressed as

Var(vk|ĝk) = Var
(√

Pdh̃
T
k Φ̂kgk|ĝk

)
= Pdh̃

T
k Φ̂k Var(gk|ĝk)Φ̂

H
k h̃∗

k. (4.49)

What remains is to evaluate Var(gk|ĝk), which can be done by using the same
LMMSE idea as before:

Var(gk|ĝk) = E[gkg
H
k ]− E[gkĝ

H
k ](E[ĝkĝ

H
k ])−1E[ĝkg

H
k ],

= Σgk
−CgyC

−1
yyC

H
gy, (4.50)

which provides Var(vk|ĝk) in closed form. Note that wk is independent of the
channels and their estimates; therefore, it is obvious that Var(wk|Ω) = σ2

w. Since
we also provided the closed-form expressions for E[vk|Ω] and Var(vk|Ω), we have
the argument of the expectation in (4.35) in closed form. The final expressions
for the capacity lower bound – for Scheme 1 (upper row) and Scheme 2 (lower
row) – are shown in (4.51).

Ergodic Capacity

For both schemes, achieving perfect CSI is possible when the channel estimation
SNR is sufficiently large since the pilot contamination is removed. Therefore,
it is meaningful to consider the channel capacity itself under perfect CSI as a
benchmark. Note that we consider the ergodic capacity since there are fading



84 CHAPTER 4. PAPER C

Ck ≥


E

[
log2

(
1 +

|h̃kΦ̂kĝk+q̃kΦ̂j p̂k|2

h̃T
k Φ̂k(Σgk

−CgyC
−1
yyCH

gy)Φ̂
H
k h̃∗

k+q̃T
k Φ̂j(Σpk

−CpyC
−1
yyCH

py)Φ̂
H
j q̃∗

k+
σ2
w

Pd

)]
,

E

[
log2

(
1 +

h̃kΦ̂kĝkĝ
H
k Φ̂H

k h̃∗
k

h̃T
k Φ̂k(Σgk

−CgyC
−1
yyCH

gy)Φ̂
H
k h̃∗

k+
σ2
w

Pd

)]
,

(4.51)

channel components. In addition, we assume that both operators configure their
RISs so that

ϕ1 = exp
(
− j(arg(h̃1) + arg(g1))

)
, (4.52a)

ϕ2 = exp
(
− j(arg(h̃2) + arg(g2))

)
. (4.52b)

Recall that we had defined the effective SISO channel for the two schemes as vk.
By plugging in the definitions of vk into

Ck = E
[
log2

(
1 +

|vk|2

σ2
w

)]
, (4.53)

the ergodic capacity for the scheme of interest can be obtained.

4.8 Extension to Multiple Users

The focus of this paper is on the idea of null forming towards the interfering
channel to mitigate inter-operator pilot contamination. Therefore, we considered
a single user per operator case to improve the readability of this manuscript. In
this section, however, we briefly describe how to generalize the system model in
Section 4.2 for multiple users.

Suppose that each operator serves Rk users. Note that we need to have
R1, R2 ≤ N since M ≥ N and the overall MIMO channel’s rank is limited by N .
In addition, we can no longer consider the pure-LOS case since the RIS-BS links
would be rank-1 and hence would be unable to support Rk > 1 users. Therefore,
we make the assumption that R1, R2 ≤ N ≤ M and rank(Hk) ≥ R, rank(Qk) ≥
R for k = 1, 2, that is, all RIS-BS channels have at least R non-zero singular
values. With this in mind, we can express the multi-user version of (4.1), the
Rk-dimensional received pilot signal, as

ypk[l] =
√
PpVk(HkΦk[l]Gk +QkΦj [l]Pk)sk[l] +Vknk[l]︸ ︷︷ ︸

≜wk[l]

, (4.54)

where the r-th row of Vk ∈ CRk×M contains the receive beamforming vector
that outputs the r-th user’s received signal. Gk,Pk ∈ CN×Rk denote the UEs-
RIS channels whose columns contain the individual users’ channels to the RIS.
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sk[l] ∈ CRk×1 is the vector of pilots transmitted by the UEs at the l-th time
instant. By defining the effective RIS-BS channels H̃k ≜ VkHk ∈ CRk×N and
Q̃k ≜ VkQk ∈ CRk×N , we can rewrite (4.54) as

ypk[l] =
√
Pp(H̃kΦk[l]Gk + Q̃kΦj [l]Pk)sk[l] +wk[l]. (4.55)

This time, the individual rows of Vk will undergo the beamforming design pro-
cesses described in Section 4.5. To separate the main lobes of the beams, each
row will have to be assigned one of the right singular vectors of Hk, and each
row will undergo the null forming process in case Scheme 2 is used. If Vk =[
vT
k,1 . . . vT

k,Rk

]T
, then the beamforming process in Section 4.5 becomes:

vT
k,1 = γH

k,1 (4.56a)

vT
k,2 = γH

k,2 (4.56b)

...

vT
k,Rk

= γH
k,Rk

, (4.56c)

where γk,1, . . . ,γk,Rk
are the Rk right singular vectors of Hk corresponding to

the Rk largest singular values of Hk. Starting from this point, every vector would
undergo the process in Section 4.5 if null forming is to be utilized.

4.9 Numerical Results

In this section, we discuss numerical examples for the channel estimation and
capacity lower bound analysis to demonstrate the benefits of mitigating inter-
operator pilot contamination. In Section 4.9, we provide the numerical results for
channel estimation for the two schemes for pure-LOS and unstructured RIS-BS
channels. In Section 4.9, we simulate the outer expectation over multiple chan-
nel realizations and compare the two schemes for pure-LOS and unstructured
channels. To show that eliminating inter-operator pilot contamination is neces-
sary, we construct a baseline scheme that transmits L = N pilots and uses the
same beamformer as Scheme 1. That is, the baseline scheme does not eliminate
inter-operator pilot contamination by receive beamforming or orthogonalizing RIS
configurations. It has to be noted that regularized zero forcing (RZF) beamform-
ing, a state-of-the-art method, is not included in the analysis as our numerical
results (not shown here) indicate that Scheme 2 provides the same performance
as the RZF approach.

Channel Estimation Based on Correlated Rayleigh Fading Priors

In this section, we provide numerical examples for estimating correlated Rayleigh
fading channels. We consider the two schemes described in Sections 4.6 and 4.6,
along with the baseline scheme described at the beginning of this section. For
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different Pp, we compute the NMSE of MMSE channel estimation, which is given
by

NMSEgk
=

tr(Σegk
)

tr(Σgk
)
, (4.57a)

NMSEpk
=

tr(Σepk
)

tr(Σpk
)
, (4.57b)

where Σegk
and Σepk

are as in (4.7). In Figs. 4.2 and 4.3, the channel estimation

NMSEs for g1 and p1
2 are shown forN = 64 andM = 256. The list of parameters

used for these figures is provided in Table 4.2. Note that although our analysis is
valid for any positive definite covariance matrix of gk and pk, we consider i.i.d.
Rayleigh fading in this section. That is, gk,pk ∼ CN (0, IN ).

In Fig. 4.2, note that p1 has a much higher NMSE than g1 for both Scheme 1
and the baseline scheme. This is because the BS beamforms towards H1 rather
thanQ1 in both schemes, therefore, the channel estimation SNR is boosted signifi-
cantly. Since both H1 and Q1 are pure-LOS channels, they are also directive and
are highly separated angularly. Therefore, beamforming towards H1 decreases
the received pilot SNR along the p1-Q1 path significantly. In addition, note that
g1 is estimated more accurately under Scheme 1 compared to Scheme 2. This is
because null forming towards Q1 weakens the main lobe of the beam. Also note
that the baseline scheme performs similarly with Scheme 2 until Pp = 45 dBm
and starts to converge to a finite value. Also note that this is the point where the
NMSEs of estimating p1 for Scheme 1 and the baseline scheme starts to be visible.
It has to be noted that the baseline scheme uses the same beamforming vector as
Scheme 1, therefore, the difference between Scheme 1 and the baseline scheme’s
performance in estimating g1 comes from the fact that L = 2N pilots are used
in Scheme 1 while L = N pilots are used in the baseline scheme. Therefore, the
gap between them is around 3 dB.

In Fig. 4.3, note that p1 has higher NMSE than g1 since the beamforming
is towards the dominant singular vector of H1. However, the gap is not as large
as that in Fig. 4.2 since both channels exhibit rich scattering in this case. For
g1, Scheme 1 provides slightly better channel estimates than Scheme 2 since null
forming towardsQ1 takes away from the beam towardsH1 resulting in lower gain.
Note that compared to the pure-LOS case, the baseline scheme has much worse
performance, starting to show the impact of inter-operator pilot contamination
at around 15 dBm. After around 30 dBm, the NMSE of the baseline scheme
converges to a constant, which is the pilot contamination term.

Note that when there is pure-LOS between the RISs and the BSs, the baseline
scheme performs similarly to Scheme 2 up to a transmit power of Pp = 50 dBm
as shown in Fig. 4.2. On the other hand, the baseline scheme has inferior perfor-
mance when the RIS-BS links do not exhibit any structure, as shown in Fig. 4.3.

2Note that the same results can also be obtained for k = 2; however, we show the results for
the first operator to keep the figures readable.
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Table 4.2: Parameters used in Figures 4.2 and 4.3.

Parameter Value
Transmit pilot power (Pp) −30,−25, . . . , 60 dBm
Carrier frequency (fc) 30 GHz, 28 GHz3

UE-RIS path loss −80 dB
RIS-BS path loss −60 dB

Noise variance (σ2
w) −90 dBm

Number of BS antennas (M) 256
Number of RIS elements (N) 64

Number of pilot transmissions (L) N , 2N

This is a consequence of the beam structures for the two cases. For the pure-LOS
case, the intended and interfering channels are already well-separated in space,
and the absence of nullforming does not degrade the performance much. That
is, there is much less inter-operator pilot contamination when there is pure-LOS
between the RISs and the BSs when compared to the case where the RIS-BS
channels do not exhibit any structure.
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Figure 4.2: Channel estimation NMSE of g1 and p1 for the two schemes when Hk and
Qk are pure-LOS channels.

3Operators 1 and 2 use these frequencies and their respective BSs and RISs have λk/2 inter-
element spacings according to these frequencies.
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Figure 4.3: Channel estimation NMSE of g1 and p1 for the two schemes when Hk and
Qk do not exhibit any structure.

Capacity Lower Bound for Reliable Communication Under
Imperfect CSI

In this section, we provide numerical examples for the capacity lower bound
expression in Section 4.7. While the results in Section 4.9 demonstrated that
Scheme 1 provides higher capacity, one should consider the fact that Scheme 2
and the baseline scheme uses half of the pilots used in Scheme 1, i.e., L = N
instead of L = 2N . To treat the two schemes fairly, we consider a fictitious
slot structure where L pilot transmissions are followed by D data transmissions.
During the data transmission phase, we assume that the capacity bounds or the
ergodic capacities apply, and hence we compute the throughput over L+D channel
uses. We assume that a single coherence block lasts for 3N transmissions. For
both schemes, we use the minimum number of pilots, i.e., L = 2N for Scheme 1
and L = N for Scheme 2 and the baseline scheme. Then, we consider the spectral
efficiency (SE) and its lower bound. Suppose that the channel capacity is C, then
the SE is D

D+LC since we use the channel D + L times and we transmit data in
D of these instances. Since a single coherence block lasts 3N transmissions, we
perform D = N data transmissions in Scheme 1 and D = 2N data transmissions
in Scheme 2 and the baseline scheme. Consequently, we transmit data 1/3 of the
time in Scheme 1 and 2/3 of the time in Scheme 2 and the baseline scheme.
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Table 4.3: Parameters used in Figures 4.4 and 4.5.

Parameter Value
Transmit data power (Pd) −30,−10, . . . , 130 dBm
Transmit pilot power (Pp) Pd

4

UE-RIS path loss −80 dB
RIS-BS path loss −60 dB

Noise variance (σ2
w) −90 dBm

Number of BS antennas (M) 256
Number of RIS elements (N) 64

Number of pilot transmissions (L) N , 2N
Number of data transmissions (D) 2N , N
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Figure 4.4: Capacity lower bound and the ergodic capacity for the two schemes and the
baseline scheme when H1 and Q1 are pure-LOS. The dashed lines represent the capacity
lower bound in (4.35) and the solid lines represent the ergodic capacity in (4.53).

In Figs. 4.4 and 4.5, note that the capacity bound curves for Schemes 1
and 2 follow the ergodic capacity curves closely, showing that perfect CSI is
indeed achievable at sufficiently high pilot transmission power. In contrast, the
capacity lower bound for the baseline scheme diverges from its corresponding

4Each point of the capacity bound plot in Fig. 4.4 and 4.5 corresponds to the case when the
pilot and data transmission powers are equal to each other. On the other hand, ergodic capacity
is based on perfect CSI.
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Figure 4.5: Capacity lower bound and the ergodic capacity for the two schemes and the
baseline scheme when H1 and Q1 do not exhibit any structure. The dashed lines represent
the capacity lower bound in (4.35) and the solid lines represent the ergodic capacity in
(4.53).

ergodic capacity curve after Pd = 30 dBm for Fig. 4.4 and Pd = −10 dBm for
Fig. 4.5.

In Fig. 4.4, the baseline scheme outperforms Schemes 1 and 2 at low transmit
powers since the signal power is scarce, and the baseline scheme neither sacrifices
its beam’s main lobe nor doubles the number of pilots. After Pd = 50 dBm, how-
ever, the baseline scheme is penalized by the inter-operator pilot contamination
despite the strong spatial separation between the intended and the interfering
channels. Consequently, Schemes 1 and 2 outperform the baseline scheme start-
ing from Pd = 60 dBm and Pd = 90 dBm, respectively. Although Scheme 1
outperforms Scheme 2 until around Pd = 20 dBm due to the scarcity of signal
power, Scheme 2 outperforms Scheme 1 at higher transmit powers thanks to fewer
pilots. Therefore, it can be inferred from Fig. 4.4 that given pure-LOS conditions
between the BSs and the RISs, the baseline scheme is preferable over the two
schemes when transmit power is limited. In contrast, Scheme 2 provides the best
performance when the transmit power is high.

While there exists a region where baseline scheme prevails when pure-LOS
RIS-BS channels exist, this is not the case when these channels do not exhibit
any structure, as seen in Fig. 4.5. The two schemes that eliminate inter-operator
pilot contamination consistently outperform the baseline scheme as the intended
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and the interfering channels are not well-separated over space. That is, pilot
contamination has to be eliminated either at the RISs or the BS. Also, note
that Scheme 2 outperforms both Scheme 1 and Scheme 2 almost everywhere in
Fig. 4.5. Therefore, one can infer that Scheme 2 provides the best performance
when the RIS-BS channels do not exhibit any structure.

4.10 Conclusions

In this paper, we investigated the use of receive beamforming to combat inter-
operator pilot contamination in RIS-aided wireless systems where two operators
share a site and utilize different RISs to serve their respective users. We consid-
ered uplink channel estimation and data transmission and proposed using receive
beamforming at the BSs to remove the interference coming from the other oper-
ator’s RIS by placing a null towards the respective channel. We considered two
different schemes. In Scheme 1, the BS beamforms towards its intended channel
without placing a null towards the interfering channel. The RISs configurations
during the pilot transmission phase are orthogonalized to eliminate inter-operator
pilot contamination. In Scheme 2, a null is placed towards the interfering RIS-BS
channel to cut off the interfering transmission and reflection path. As the inter-
operator pilot contamination is removed at the BS, the RISs configurations are
not orthogonalized, hence the number of pilots used in the channel estimation
phase is halved. We investigated the performance of these two schemes when
the RIS-BS channels are pure-LOS and when they are unstructured in terms of
channel estimation MSE, the resulting capacity lower bounds under imperfect
CSI and the ergodic capacities. Our numerical results show that at high trans-
mit powers, Scheme 2 outperforms Scheme 1 and the baseline scheme in terms
of capacity lower bound due to a lower number of pilots and matching chan-
nel estimation performance. While Scheme 2 prevails at high transmit powers
for both pure-LOS and unstructured RIS-BS channel scenarios, this is not the
case at low transmit powers. The extra energy captured by Scheme 1 and the
baseline scheme gains importance when the transmit power is low. In addition,
the baseline scheme uses half as many pilots as Scheme 1, and it is not affected
much by the inter-operator pilot contamination when the RIS-BS channels are
pure-LOS. This is because, the baseline scheme beamforms towards its intended
channel, inevitably reducing its gain from the interfering channel. In contrast,
Schemes 1 and 2 consistently outperform the baseline scheme when the RIS-BS
channels are unstructured since beamforming towards the intended channel does
not reduce the gain from the interfering channel. In addition, we also showed
that Scheme 2 consistently outperforms both schemes in such scenarios. There-
fore, we can conclude that the proposed scheme to eliminate inter-operator pilot
contamination by receive beamforming is highly beneficial at high transmission
powers, and the cases where the baseline scheme prevails are limited to pure-LOS
RIS-BS channels and low transmission powers.
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Since we focused on the idea of placing a null towards the interfering channel
and eliminating pilot contamination in this work, we kept the rest of the system
model rather simple and tractable. However, further work can be done on how
this scheme performs under different channel characteristics and when multiple
users are served. In Section 4.8, we provided the system model formulation for the
multi-user case. However, further analysis is required to identify how to handle
the multi-user beamforming problem.



Chapter 5

Joint Pilot-Based Localization and
Channel Estimation in RIS-Aided
Communication Systems

Abstract

In this letter, we investigate the use of reconfigurable intelligent surfaces
(RISs) to jointly estimate the position and channel of a user equipment (UE)
using uplink pilot signals. We consider a setup with a user and a base sta-
tion (BS), where the direct path between the BS and the UE is blocked and
virtual line-of-sight (LOS) links are created over two reconfigurable intelli-
gent surfaces (RISs). We investigate the benefits of exploiting the channel
geometry to estimate the user’s position and the user-RIS channels jointly in
terms of estimation performance and pilot overhead. To this end, we consider
the Cramér-Rao Lower Bound for channel estimation and UE localization.
Our numerical results show that exploiting the LOS structure of the channels
improves the channel estimation performance by several orders of magnitude
and reduces the channel estimation performance by reducing the number of
unknown parameters.

5.1 Introduction

The rapid advancements of wireless communication systems have been driven
by the ever-increasing demand for throughput, coverage, and reliability due to
social habits altered by advancing technology. As a result, the current demands
for the sixth generation of wireless communication systems (6G) require a set of
key enabling technologies, one of which is RIS [22]. An RIS is a passive device
consisting of multiple meta-material-based elements whose reflective properties
are externally controllable, which allows a partial manipulation of the propagation
environment in favor of communicating UEs [23,66].
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As 6G is designed as a multi-functional system offering massive connectiv-
ity, localization, and sensing services [67], there exists a multitude of studies
considering RIS-aided localization systems and their synergies with communica-
tion systems. In [68], RIS-aided localization and sensing are discussed from a
signal processing perspective. It is discussed that the RIS acts not only as an
additional anchor node for localization but also as an entity boosting the system
performance via configuration optimization. In [69], an RIS-aided near-field local-
ization system is considered under phase-dependent amplitude variations of the
RIS elements. In [70], RIS-aided localization is considered when some of the RIS
elements fail with a certain probability. Such hardware impairments significantly
affect localization performance since the system extracts sensitive geometric in-
formation from the observations to obtain the user location. On the other hand,
for pure communication purposes, the unstructured channel estimates usually
suffice. Nevertheless, localization information has the potential to boost com-
munication performance significantly since the user location implicitly provides
a significant portion of the CSI, especially in LOS-dominant channels. To utilize
this potential, synergies between localization and communication are investigated
throughout the literature.

In [71], a strategy to optimize the RIS for localization and sensing is proposed..
Additionally, a user tracking scheme is also proposed in this study. In [72],
position estimates are used for channel estimation. In [73], location information
is used to aid the communication system by estimating AoDs from Rician channel
estimates.

For LOS channels in particular, there are direct relations between the geomet-
ric parameters and the channel coefficients, therefore, it is rather straightforward
to estimate the channel based on the information obtained from localization.
However, these relations are highly nonlinear, therefore, the achievable estima-
tion performance is highly dependent on the values of the parameters. Therefore,
theoretical analysis of the achievable estimation performance is necessary for all
possible values of the parameters. To this end, we consider the uplink of a two-RIS
indoor communication system, where the BS localizes a single UE and estimates
its channel based on the location estimate. The BS utilizes the same set of pilot
transmissions for both tasks by estimating the channel gain, propagation delay,
and AoAs of the signals impinging on both RISs, and using the RIS and system
geometry to estimate the channel and the UE position. As our performance met-
ric for location and channel estimation, we consider the CRLB, which provides a
lower bound on the variance of any unbiased estimator. In addition, we consider
the use of parameter estimates for channel estimation as a potential solution for
the additional pilot overhead caused by using multiple RISs demonstrated in [16].
Our contributions in this letter can be summarized as follows:

• For both channel estimation and user localization, we provide the CRLB on
the MSE in closed form for all user locations.
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Figure 5.1: Two-RIS localization system. The coordinate system within the room is
specified with the axis arrows in the upper right corner of the figure, and the origin of the
coordinate system corresponds to the point marked in the middle of the two side walls on
which the RISs are mounted on, and on the receiver-side wall. The room is 2xmax meters
wide, that is, RIS 1 and RIS 2 are located at the coordinates (+xmax, 0) and (−xmax, 0)
respectively. The room extends down the y-axis up to ymax meters, i.e., the rear corners
correspond to (+xmax,+ymax) and (−xmax,+ymax).

• In the presence of multiple RISs, we show that parametric channel estima-
tion yields more accurate channel estimates with fewer pilot transmissions
than non-parametric channel estimation. We demonstrate this by compar-
ing the CRLBs on parametric and non-parametric channel estimation MSEs,
where the non-parametric estimation scheme uses twice as many pilots as the
parametric estimation scheme does.

5.2 System Model

We consider the indoor joint communication and localization setup aided by two
RISs illustrated in Fig. 2.1. The matrices H ∈ CM×N and Q ∈ CM×N denote
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the static and known channels between the RISs and the M -antenna BS, where
N is the number of elements in each RIS. Moreover, the channels between the
unknown target/UE to the RISs, assumed to be purely LOS, are denoted by
g ∈ CN and p ∈ CN . The signal received after a single pilot transmission can be
expressed as

yp =
√

Pp(HΦ1g +QΦ2p)s+w ∈ CM×1, (5.1)

where Pp denotes the pilot transmission power, Φk = Diag(e−jϕk1 , . . . , e−jϕkN ) ∈
CN×N denotes the diagonal response matrix of RIS k, s ∈ C denotes the trans-
mitted positioning reference signal, and w ∼ CN (0, σ2

wIM ) denotes the additive
receiver noise. When considering the estimation of channel-related parameters,
it is more convenient to rewrite (5.1) as

yp =
√

Pp(ϕ1DHg + ϕ2DQp)s+w ∈ CM×1, (5.2)

whereDH ≜ Diag(H1, . . . ,HN ) ∈ CMN×N ,DQ ≜ Diag(Q1, . . . ,QN ) ∈ CMN×N

with Hn and Qn denoting the n-th columns of H and Q, respectively, and
ϕk = diag(Φk) ⊗ IM ∈ CMN×M for k = 1, 2. DH and DQ are block diago-
nal matrices built of M×1 blocks, and the diagonal blocks contain the individual
columns of H and Q. Assuming that the pilot transmission is repeated over
time L ≥ N times with varying RIS configurations and s[l] = 1 for l = 1, . . . , L,
we can express the collection of observations Yp ≜ [yT

p [1], . . . ,y
T
p [L]]

T as

Yp =
√

Pp(B1DHg +B2DQp) +W ∈ CLM , (5.3)

where Bk ≜ [ϕk[1], . . . ,ϕk[L]]
T ∈ CLM×MN and W ∼ CN (0, σ2

wILM ). Note
that ϕk[l] also contains the pilot signals s[l], however, since we choose s[l] = 1 for
l = 1, . . . , L, ϕk[l] are the same as the RIS configruations.

Since we consider purely LOS channels, the unknown g and p channels are
structured based on the RIS geometries, attenuation, and propagation delay. For
both RISs, we consider the ULA geometry and perform 2D localization in the
far-field region. Based on the azimuth AoAs φ1 and φ2 on RIS 1 and RIS 2,
respectively, g and p can be expressed as

g =
√
α1e

−j2πfcτ1a(φ1), (5.4a)

p =
√
α2e

−j2πfcτ2a(φ2), (5.4b)

where a(φ) =
[
1 e−j2π∆

λ sin(φ) . . . e−j2π(N−1)∆
λ sin(φ)

]T
denotes the array

steering vector for the ULA geometry. In the next section, we derive the CRLB
on the channel estimation MSE and the UE localization error.

5.3 CRLB on Localization and Channel Estimation

In a parameter estimation problem, it is useful to determine an achievable lower
bound on the estimation performance to serve as the gold standard. The CRLB—
the inverse of the FIM—provides a lower bound on the MSE of any unbiased
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estimator [12] via the following matrix inequality:

Cov(θ̂(X)) ⪰ I−1(X;θ) (5.5)

for an estimate of a parameter vector θ based on an observation vector X. Here,
Cov(θ̂(X)) = E[(θ̂(X) − θ)(θ̂(X) − θ)H ] is the covariance matrix and, conse-
quently, the bound on the sum MSE can be expressed as

E[∥θ̂(X)− θ∥2] ≥ tr
(
I−1(X;θ)

)
. (5.6)

In a generic vector parameter estimation problem, the FIM is computed via the
following equation [28, Eq. 3.21]:

[I(X;θ)]ij = −E
[
∂2 ln(f(X;θ))

∂θiθj

]
, (5.7)

where f(X;θ) denotes the likelihood function of the observation X based on
the unknown vector parameter θ. In our channel estimation problem, the received
pilot signal in (5.3) can be expressed as

Yp =
√

Pp

[
B1DH B2DQ

]︸ ︷︷ ︸
≜F

[
g
p

]
︸︷︷︸
≜v

+W. (5.8)

Here, v denotes the ensemble of unknown channel coefficients without any LOS
parametrization. In this form, we have a linear observation model with additive
complex Gaussian noise. Consequently, it is much easier to compute the FIM here
than explicitly differentiating the log-likelihood function as one would do for a
generic parameter-observation model. Using this special form of the observation
model in (5.8), the FIM can be expressed as

I(Yp;v) = PpF
HI(W)F, (5.9)

where I(W) denotes the FIM with respect to a translation parameter defined
in [74, Eq. 8]. Since w is Gaussian, it satisfies the relation I(W) ⪰ 1

σ2
w
I in [74, Eq.

10] with equality. Therefore, (5.9) can be simplified as

I(Yp;v) =
Pp

σ2
w

FHF ∈ C2N×2N . (5.10)

The rank of (5.10) depends on the column rank of F, which depends on the choice
of B1 and B2. To ensure that the FIM is non-singular, one must have L ≥ 2N ,
and F must have full column rank. To this end, it is tempting to choose B1 and
B2 such that BH

1 B2 = 0 as this configuration allows the pilot signals to explore
all the unknown dimensions of the channel. When the channels gk and pk do not
exhibit any structure, this method provides accurate channel estimates, as shown
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in [16]. For the non-parametric channel estimation problem, the signal model is
as in (5.8), and the ML estimate of v can be expressed as

v̂ =
1√
Pp

(FHF)−1FHyp. (5.11)

For (5.11) to exist, FHF should be invertible, which is maintained by choosing
BH

1 B2 = 0. This also implies that the FIM is invertible, that is the CRLB exists
and can be expressed as

I−1(Yp;v) =
σ2
w

Pp
(FHF)−1. (5.12)

On the other hand, the error covariance matrix achieved by (5.11) becomes

E[(v̂ − v)(v̂ − v)H ] = E[v̂v̂H ] + vvH − 2Re{E[v̂vH ]}

=
1

Pp
(FHF)−1FHE[ypy

H
p ]F(FHF)−1

+ vvH − 2Re

{
1√
Pp

(FHF)−1FHE[ypv
H ]

}

= vvH +
σ2
w

Pp
(FHF)−1 + vvH − 2vvH =

σ2
w

Pp
(FHF)−1, (5.13)

which shows that v̂ achieves the CRLB when FHF is full-rank. While this estima-
tor works successfully when the channels of interest do not exhibit any structure,
the minimum number of pilots required increases significantly with an increasing
number of RIS elements.

CRLB on UE Localization Error

So far, we have derived the FIM between the observation yp and the channel
coefficients v when the UE-RIS channels do not exhibit any structure. When
these channels have parametric LOS structures, however, they can be expressed
in terms of much fewer parameters, as in (5.4), which is quite convenient in terms
of reducing the number of pilot transmissions since the number of RIS elements N
can be very large in practice. To overcome this, we can exploit our knowledge of
the RISs’ geometry since each N -dimensional channel can be expressed in terms
of three parameters: attenuation, propagation delay, and azimuth angle of arrival
While αk, τk, and φk seem like independent parameters, they are coupled through

the UE position z ≜
[
xt yt

]T
. While the propagation delays’ and azimuth AoAs’

relations with the UE are straightforward, we can use the free space path loss
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model to relate the attenuation parameters to (xt, yt) as follows:

α1 =

(
c

4πfc
√
y2t + (xmax − xt)2

)2

(5.14a)

α2 =

(
c

4πfc
√
y2t + (xmax + xt)2

)2

(5.14b)

τ1 =

√
y2t + (xmax − xt)2

c
(5.14c)

τ2 =

√
y2t + (xmax + xt)2

c
(5.14d)

φ1 = tan−1

(
yt

xmax − xt

)
(5.14e)

φ2 = tan−1

(
yt

xmax + xt

)
(5.14f)

By combining (5.4) and (5.14), we can define the following non-linear transforma-
tion between the UE coordinates and the channels to be estimated as β(z) ≜ v.

To obtain the FIM between Yp and z, we need to use a well-known result [28,
Eq. 3.30]:

I−1(Yp;β(z)) = JH
β I−1(Yp; z)Jβ, (5.15)

where Jβ is the Jacobian of β w.r.t. z, which is a 2× 2N matrix where the ijth

entry is [Jβ]ij =
∂βj(z)
∂zi

. Using the Moore-Penrose pseudoinverse of the Jacobian,

one can obtain I−1(Yp; z) as

I−1(Yp; z) = (JβJ
H
β )−1JβI

−1(Yp;β(z))J
H
β (JβJ

H
β )−1. (5.16)

To obtain I−1(Yp; z) in closed form, what remains is to obtain Jβ. To this end,
we can express Jβ as a 2× 2 block matrix of 1×N entries:

Jβ =

[
∂g
∂xt

∂p
∂xt

∂g
∂yt

∂p
∂yt

]
(5.17)
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By using the chain rule for derivatives on (5.4), we obtain

∂g

∂xt
= e−j2πfcτ1

[
1

2
√
α1

∂α1

∂xt
a(φ1)

− j2πfc
∂τ1
∂xt

√
α1a(φ1) +

√
α1

∂a(φ1)

∂φ1

∂φ1

∂xt

]
, (5.18a)

∂p

∂xt
= e−j2πfcτ2

[
1

2
√
α2

∂α2

∂xt
a(φ2)

− j2πfc
∂τ2
∂xt

√
α1a(φ2) +

√
α2

∂a(φ2)

∂φ2

∂φ2

∂xt

]
, (5.18b)

∂g

∂yt
= e−j2πfcτ1

[
1

2
√
α1

∂α1

∂yt
a(φ1)

− j2πfc
∂τ1
∂yt

√
α1a(φ1) +

√
α1

∂a(φ1)

∂φ1

∂φ1

∂yt

]
, (5.18c)

∂p

∂yt
= e−j2πfcτ2

[
1

2
√
α2

∂α2

∂yt
a(φ2)

− j2πfc
∂τ2
∂yt

√
α1a(φ2) +

√
α2

∂a(φ2)

∂φ2

∂φ2

∂yt

]
, (5.18d)

In (5.18), the derivatives to be evaluated are ∂a
∂φ ,

∂αk

∂xt
,∂αk

∂yt
, ∂τk

∂xt
,∂τk∂yt

, ∂φk

∂xt
, and

∂φk

∂yt
. Using the array steering vector formula and (5.14), we can evaluate these

as follows:

∂a

∂φ
=
[
0 . . . −j2π∆

λ (N − 1) cos(φ)e−j2π∆
λ (N−1) sin(φ)

]T
(5.19a)

∂αk

∂xt
=

±32π2f2
c c

2(xmax∓xt)[
16π2f2

c (xmax∓xt)2+16π2f2
c y

2
t

]2 (5.19b)

∂αk

∂yt
=

−32π2f2
c c

2yt[
16π2f2

c (xmax∓xt)2+16π2f2
c y

2
t

]2 (5.19c)

∂τk
∂xt

=
∓(xmax∓xt)

c
√
(xmax∓xt)2+y2

t

(5.19d)

∂τk
∂yt

=
yt

c
√
(xmax∓xt)2+y2

t

(5.19e)

∂φk

∂xt
=

∓y2t
y2t + (xmax∓xt)2

(5.19f)

∂φk

∂yt
=

(xmax∓xt)

y2t + (xmax∓xt)2
(5.19g)
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Figure 5.2: The geometrical relationship between the azimuth AoAs and the cartesian
coordinates.

As a result, we obtain the Jacobian in closed form and therefore have I−1(Yp; z).
The diagonal entries of this matrix provide a lower bound on the squared error
in estimating xt and yt. To obtain the localization error bound (LEB) in meters,
we just have to calculate the 2-norm of the resulting error vector. Consequently,
the LEB becomes

LEB =
√

tr(I−1(Yp; z)). (5.20)

CRLB on Channel Estimation MSE

The inverse FIM between Yp and the cartesian coordinates of the UE we de-
rived using the channel geometry provides the goldens standard for any unbiased
location estimator. Using a similar idea, we can obtain a lower bound on the
performance of unbiased parametric channel estimators by using the non-linear
transformation v = β(z), similar to the parametric estimation idea in [17]. While
we do not derive any parametric estimators in this letter, we provide the CRLB
as an indicator of what is achievable if a parametric channel estimator were to
be designed for such a system. To determine the CRLB on parametric channel
estimation MSE, using (5.15) suffices, that is:

Cov(β(ẑ)) ⪰ JH
β I−1(Yp; z)Jβ. (5.21)
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Parameter Value
Pp 50 dBm
σ2
w −104 dBm
fc 30GHz
M 64
N 16
L 16, 32

xmax 20m
ymax 40m

Table 5.1: System parameters used for the numerical results. The value for σ2
w is obtained

by considering a 10 MHz transmission bandwidth and a noise power spectral density of
−174dBm/Hz. In addition, the BS is located at (10,−40) according to the coordinate
system provided in Fig. 5.2.

5.4 Numerical Results

In this section, we provide numerical examples for the analysis we have provided.
To this end, we consider the set of system parameters in Table 5.1. To capture
large-scale effects, we consider the free space path loss model. Fig. 5.3 and 5.4
show the normalized channel estimation CRLB, that is, we normalize the traces of
the CRLBs in (5.12) and (5.21), respectively, by ∥v∥22 = 2N . Note that paramet-
ric estimation vastly outperforms the non-parametric estimation. Although the
non-parametric estimation uses twice as many pilots as the parametric estima-
tion, the knowledge of the channel structure in parametric estimation significantly
reduces the number of unknown parameters and boosts the channel estimation
performance by three orders of magnitude. Non-parametric channel estimation
also yields very high MSE due to the high carrier frequency and severe path loss.

In Fig. 5.5, we plot the LEB (in meters) throughout the room, as provided
by (5.20). Note that for a large part of the surface of the room, the localization
accuracy is at the sub-decimeter level. However, the significant inaccuracy at
around yt = 0 must be noted. In this region, both RISs receive the UE’s signal
almost perpendicularly, and hence the observation is not so sensitive to the exact
position of the UE, resulting in low Fisher information. Even in this region, the
accuracy is between meter and decimeter levels.

5.5 Conclusion

In this letter, we investigated the use of RISs for an integrated communication
and localization system in an indoor environment. We proposed a setup with
a single-antenna UE and an M -antenna BS between which pure LOS links are
maintained via two N -element RISs. By exploiting the channel and indoor ge-
ometries, we showed that it is possible to use the same pilot signals to estimate
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Figure 5.3: Non-parametric channel estimation MSE for BH
1 B2 = 0. Note that we

transmit L = 2N pilots for non-parametric estimation as opposed to L = N pilots for
parametric estimation.

the position of the UE, and the UE-RIS channels. As the performance metric,
we used the CRLB, the lower bound on the MSE of any unbiased estimator.
Through numerical examples, we showed that it is feasible to use two RISs to
locate an indoor user and utilize the location information to estimate the un-
known channels. Considering the parametric structures of LOS channels not only
brings the benefits of reducing the pilot transmission overhead, but also improves
the channel estimation performance by multiple orders of magnitude and hence
acts as a precursor to a plethora of possibilities in localization-aided channel es-
timation to develop more pilot-efficient systems. In this letter, we considered the
estimation of pure-LOS channels exploiting the channel structure, which is quite
significant due to the more structured nature of mmWave channels compared to
the channels with µ-wave frequencies [75]. While our analysis is extendable to
scenarios with a direct UE-BS path, we considered a setup where the direct path
is blocked in this work, which is realistic at mmWave/THz frequencies due to
high penetration losses. Although we ignored the presence of scattering clusters,
the analysis provided in this paper is extendable to clustered channel models,
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Figure 5.4: CRLB on the parametric channel estimation MSE for B1 = B2. Note
that the channel estimation MSE is decreased by three orders of magnitude compared to
Fig. 5.3 although half as many pilots are used.

which will be investigated in future work.
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Figure 5.5: CRLB on UE localization in meters. Note that the figure indicates sub-
decimeter localization accuracy for the entire area, and almost centimeter-level localization
accuracy around where the localization geometry is the most favorable.





Chapter 6

Performance Analysis of a
2D-MUSIC Algorithm for
Parametric Near-Field Channel
Estimation

Abstract

In this letter, we address parametric channel estimation in a multi-user
multiple-input multiple-output system within the radiative near-field of the
base station array with aperture antennas. We consider a two-dimensional
multiple signal classification algorithm (2D-MUSIC) to estimate both the
range and azimuth angles of arrival for the users’ channels, utilizing para-
metric radiative near-field channel models. We analyze the performance of
the algorithm by deriving the Cramér-Rao bound (CRB) for parametric esti-
mation, and its effectiveness is compared against the least squares estimator,
which is a non-parametric estimator. Numerical results indicate that the 2D-
MUSIC algorithm outperforms the least squares estimator. Furthermore, the
results demonstrate that the performance of 2D-MUSIC achieves the paramet-
ric channel estimation CRB, which shows that the algorithm is asymptotically
consistent.

6.1 Introduction

The success of massive multiple-input multiple-output (M-MIMO) implementa-
tion in 5G systems, across both sub-6 GHz and mmWave bands, suggests that the
next generation of wireless systems will likely exploit even larger arrays, referred
to as the extremely large aperture array (ELAA) [76–78]. Moreover, there is
an ongoing trend toward employing higher frequencies, implying a smaller wave-
length in wireless systems [79,80]. As the array size increases and the wavelength
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shrinks, the Fraunhofer array distance, the boundary between radiative near- and
far-fields, becomes large. Consequently, the UEs are likely to fall into the radiative
near-field region of the ELAA [14, 81]. In the radiative near-field, the spherical
curvature of the wavefront is noticeable; therefore, there are spherical phase vari-
ations between the antenna elements in the ELAA. The phase variations must be
characterized by both the angle and distance between the ELAA and the trans-
mitter. This renders far-field channel models inaccurate as the far-field array
response does not capture information about the propagation distance.

To address this issue, polar-domain representation for the extremely large-
scale MIMO (XL-MIMO) channel has been proposed in [82, 83]. Reference [82]
focuses on the recovery of the angular and distance information in the near-field
channel utilizing the sparsity in the polar domain, while [83] utilizes the distance
domain in addition to the angular domain to multiplex UEs in LOS scenarios.
With the polar-domain representation, one can sample both the angular and
distance domains to obtain a near-field codebook. Moreover, the polar-domain
representation is used to ensure a sparsity representation of the near-field channel,
enabling the utilization of compressive sensing methods such as the classical and
algorithms [82].

When the channel is pure-LOS, another way to estimate the near-field channel
is to first estimate the parameters of the UEs’ locations, given that the channel
has a simple and known parametrization. Subsequently, the parameters are sub-
stituted into the channel parametric model to yield the channel estimate. The
state-of-the-art [14] focuses on developing a low complexity algorithm to esti-
mate the parameters of the UE’ locations by performing subsequential parameter
estimations neglecting the correlation between the parameters. However, this in-
troduces notable peformance degradation. Furthermore, there is no theoretical
bound that is derived to guarantee the performance of the estimator.

In this letter, we explore the possibility of estimating the UEs’ locations in
polar coordinates based on the 2D near-field channel model, where the channel
is assumed to be pure-LOS. Then, we use the parameter estimates to infer the
channel coefficients. More importantly, we derive the CRB on the parametric
channel estimation MSE to evaluate the performance of the 2D-MUSIC estimator.
The CRB provides a lower bound on the variance of any unbiased estimator
[12], and depends heavily on the relationship between the observation and the
parameter. Therefore, it is useful in evaluating parametric estimators. In [84],
the CRB on parametric channel estimation is derived with a far-field model for
a system using two reconfigurable intelligent surfaces by considering the non-
parametric CRB as a transitional step towards a parametric channel estimation
CRB. To the best of the authors’ knowledge, however, such an analysis has
not been used to evaluate the performance of parametric channel estimators.
In this letter, we explore the opportunities of parametric channel estimation in
near-field channels with aperture antennas by performing the aforementioned
analysis. In addition to the CRB analysis, we also compare the performance
of the 2D-MUSIC algorithm with a non-parametric estimator, namely, the least
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squares (LS) estimator to observe the performance gain from parametric channel
estimation.

6.2 System Model

We consider a BS equipped with a ULA consisting ofN aperture antennas, serving
K single-antenna UEs. The location of UE k is denoted as (xk, 0, zk), which is
assumed to be in the radiative near-field region (Fresnel region) of the BS array,
for k ∈ {1, . . . ,K}. Without loss of generality, we let the BS be geometrically
arranged along the x-axis with half-wavelength spacing, and the array is centered
around (0, 0, 0). Antenna element n is centered at (x̄n, 0, 0) with

x̄n =

(
n− N + 1

2

)
︸ ︷︷ ︸

δn

λ

2︸︷︷︸
∆

, (6.1)

where δn and ∆ are the index of antenna element n and spacing between two
antenna elements, respectively. The aperture antennas each have an area of ∆2

along the xy-plane.
The channel between antenna element n and UE k located at the distance dk

(from the origin) in the azimuth angle φk with respect to the origin (measured
from x-axis towards the z-axis) is represented as

hk
n(dk, φk) =

√
βn,ke

−j 2π
λ rkn , (6.2)

where rkn =
√
d2k + (δn∆)2 − 2dk∆δn cos(φk). The free-space channel gain be-

tween antenna n and UE k (βn,k) can be approximated as [85]

βn,k ≈ βk =
λ2

16π

sin(φk)

d2k
(6.3)

which accounts for the angle-dependent effective antenna area of the transmitter.
The approximation holds when the propagation distance is larger than twice the
array aperture [81] so that the spherical amplitude variations over the wavefront
are negligible but not the phase variations. Using (6.2) and (6.3), we can model
the near-field channel vector to UE k as

hk(dk, φk) =
√
βk

[
e−j 2π

λ rk1 . . . e−j 2π
λ rkN

]T
. (6.4)

At time instance l, the received signal can be written as

y[l] = Hs[l] +w[l], l = 1, . . . , L, (6.5)

where H = [h1(d1, φ1) . . . hK(dK , φK)], y[l] = [y1[l] . . . yN [l]]T contains the
received signals, s[l] = [s1[l] . . . sK [l]]T represents the transmitted signals from
K UEs, andw[l] = [w1[l] . . . wN [l]]T is the additive noise where each entry follows
an independent complex Gaussian distribution with zero mean and variance σ2.
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6.3 Near-Field Parametric Channel Estimation via
2D-MUSIC

In this section, our aim is to estimate the channels hk(dk, φk) for k = 1, . . . ,K
based on (6.5). Combining L such observations over time, we first aim to esti-
mate the ranges dk and azimuth AoAs φk for k = 1, . . . ,K using the 2D-MUSIC
algorithm. The channel response function, defined in (6.2), allows us to charac-
terize the UEs’ channels by estimating the locations (dk, φk), k = 1, . . . ,K, from
L transmissions at distinct instants. This allows us to estimate the channels of
the K UEs based on the dk and φk by using the parametric model in (6.4). In
the following, we provide a way to utilize 2D-MUSIC to estimate the UEs’ chan-
nels. We assume that: 1) The UEs are not located in exactly the same angular
directions. 2) The transmitted signals are assumed to follow a circular symmetric
complex Gaussian distribution. 3) The noise is independent of all the signals.

The MUSIC algorithm works by exploiting the structure of the eigenvectors
in the sample covariance matrix [11]:

R̂L =
1

L

L∑
l=1

y[l]yH [l]. (6.6)

Given the number of UEs K, we first construct the noise-subspace matrix Ûn ∈
CN×(N−K) whose columns are the eigenvectors of R̂L corresponding to the small-
est (N −K) eigenvalues. Then, the 2D MUSIC spectrum is generated as

S(d, φ) =
1

hH(d, φ)ÛnÛH
n h(d, φ)

, (6.7)

where each possible value of h(d, φ) is obtained by computing the potential chan-
nel responses by plugging the grid points into (6.4). K combinations of (d, φ)
corresponding to the peaks in the MUSIC spectrum are then identified, each
representing a UE’s location. The channel estimate Ĥ can then be obtained by
substituting the parameter estimates (dk, φk), k = 1, . . . ,K into (6.2).

6.4 CRB on Near-Field Parametric Channel Estimation

In parameter estimation problems, bounds on estimation performance serve as
the golden standard to evaluate the performance of estimators. To this end, we
derive the CRB on the near-field parametric channel estimation in this section.
The CRB, the inverse of the FIM, provides a lower bound on the performance of
any unbiased estimator [12] via the following matrix inequality:

Cov
(
θ̂(X)

)
⪰ I−1(X;θ) (6.8)
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for an estimate of a parameter vector θ based on an observation vector X. Here,
Cov(θ̂(X)) = E[(θ̂(X) − θ)(θ̂(X) − θ)H ] is the covariance matrix and, conse-
quently, the bound on the sum MSE can be expressed as

E
[∥∥∥θ̂(X)− θ

∥∥∥2] ≥ tr
(
I−1(X;θ)

)
. (6.9)

In a generic vector parameter estimation problem, the FIM is computed via the
following equation [28, Eq. 3.21]:

[I(X;θ)]i,j = −E
[
∂2 ln(f(X;θ))

∂θi∂θj

]
, (6.10)

where θi is the i-th element of θ. In our near-field parametric channel estimation
problem, the observation from a single transmission is stated in (6.5). Before
ensembling the observations from multiple transmissions, it is more convenient to
change the order of the transmitted signals and the unknown channel in (6.5) as

y[l] =
[
s1[l]IN . . . sK [l]IN

]︸ ︷︷ ︸
≜S[l]∈CN×NK

 h1(d1, φ1)
...

hK(dK , φK)


︸ ︷︷ ︸
≜h̃(θ)∈CNK×1

+w[l], (6.11)

where θ ≜ [d1 . . . dK φ1 . . . φK ]T ∈ R2K . While (6.11) corresponds to the ob-
servation from a single transmission, we can stack the observations from multiple
transmissions l = 1, . . . , L vertically to obtain

ỹ = Sh̃(θ) + w̃ ∈ CLN×1, (6.12)

where ỹ ≜ [yT [1] . . . yT [L]]T ∈ CLN , S ≜ [ST [1] . . . ST [L]]T ∈ CLN×NK , and
w̃ ≜ [wT [1] . . . wT [L]]T ∈ CLN . To compute the FIM, we first define a transition
parameter v ≜ h̃(θ), for which we can express the FIM as

I(ỹ;v) = SHΣ−1
w̃ S, (6.13)

where Σw̃ = E[w̃w̃H ] ∈ CLN×LN is the noise covariance matrix, which has the
following relationship with the noise covariance for a single transmission Σw =
E[wwH ] ∈ CN×N :

Σw̃ = IL ⊗Σw = σ2ILN . (6.14)

This relation holds since the noise is independent over both time and antennas.

CRB for Vector Transformations

To incorporate the parametric nature of the channel into the CRB analysis, we
consider the parametric model h̃(·) : R2K 7→ CNK as a vector transformation to
utilize the following identity [28, Eq. 3.30]:

I−1(ỹ;v) = JH
h̃
I−1(ỹ;θ)Jh̃, (6.15)
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where Jh̃ ∈ C2K×NK is the Jacobian of the non-linear transformation h̃ : R2K 7→
CNK with entries [Jh̃]i,j =

∂h̃j

∂θi
. While (6.15) suffices to obtain the inverse FIM

between the observation and the location parameters, the non-parametric FIM
in (6.13) is not always invertible. Therefore, it is more desirable to have an
expression for I(ỹ;θ) in terms of I(ỹ;v). To this end, we multiply (6.15) with
the pseudoinverse of Jh̃ from both sides to obtain

I−1(ỹ;v) = JH
h̃
I−1(ỹ;θ)Jh̃ ⇒ Jh̃I(ỹ;v)J

H
h̃

= I(ỹ;θ). (6.16)

Combining (6.13) and (6.16) yields the 2K×2K FIM between the received signals
and the UEs’ coordinates. To obtain the parametric channel estimation CRB, we
invert I(ỹ;θ) and apply (6.15):

I−1(ỹ; h̃(θ)) = JH
h̃
I−1(ỹ;θ)Jh̃. (6.17)

Jacobian of the Parametric Channel

To obtain the CRB on the MSE of any parametric estimator for our setup, what
remains is to derive the Jacobian of h̃(·) in closed form. Based on the definition
of h̃ in (6.11), the Jacobian can be obtained as Jh̃ = [JT

1 ,J
T
2 ]

T where J1,J2 ∈
CK×NK are block diagonal matrices containing the partial derivatives of the chan-

nel with respect to dk and φk, respectively. That is, J1 = diag
(

∂hT
1

∂d1
, . . . ,

∂hT
K

∂dK

)
and J2 = diag

(
∂hT

1

∂φ1
, . . . ,

∂hT
K

∂φK

)
. To derive ∂hk

∂dk
and ∂hk

∂φk
, we need to recall the

near-field channel model parametrized by UE location in Section 6.2. Starting
from (6.4), we have

∂hk

∂dk
=

1

2
√
βk

∂βk

∂dk

[
e−j 2π

λ rk1 . . . e−j 2π
λ rkN

]T
+
√
βk

[
−j 2π

λ
∂rk1
∂dk

e−j 2π
λ rk1 . . . −j 2π

λ
∂rkN
∂dk

e−j 2π
λ rkN

]T
, (6.18a)

∂hk

∂φk
=

1

2
√
βk

∂βk

∂φk

[
e−j 2π

λ rk1 . . . e−j 2π
λ rkN

]T
+
√
βk

[
−j 2π

λ
∂rk1
∂φk

e−j 2π
λ rk1 . . . −j 2π

λ
∂rkN
∂φk

e−j 2π
λ rkN

]T
, (6.18b)
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where ∂βk

∂dk
, ∂βk

∂φk
,

∂rkn
∂dk

, and
∂rkn
∂φk

can be expressed as

∂βk

∂dk
= −λ2

8π

sin(φk)

d3k
, (6.19a)

∂βk

∂φk
=

λ2

16π

cos(φk)

d2k
, (6.19b)

∂rkn
∂dk

=
dk −∆δn cos(φk)√

d2k + (δn∆)2 − 2dk∆δn cos(φk)
, (6.19c)

∂rkn
∂φk

=
dk∆δn sin(φk)√

d2k + (δn∆)2 − 2dk∆δn cos(φk)
. (6.19d)

As a result, we have Jh̃ and hence the CRB for parametric channel estimation in
closed form.

6.5 Numerical Results

In this section, we provide numerical examples to demonstrate the performance
of the 2D-MUSIC algorithm. In addition, we include a non-parametric channel
estimator, namely, the LS estimator. Note that one disadvantage of the LS esti-
mator is that it requires a known sequence of pilots while the 2D-MUSIC method
does not. For both estimators, we use the CRB as the benchmark. Specifically,
for the LS estimator, we use the non-parametric CRB (inverse of (6.13)) and for
2D-MUSIC, we use the parametric CRB we derived in Section 6.4. In addition,
we examine the impact of the location of the UE on the channel estimation perfor-
mance by considering a two-UE setup, assigning one of the UEs a fixed location,
and changing the location of the other UE. We provide the parameters used to
generate the numerical results in Table 6.1.

Performance of the 2D-MUSIC Algorithm

We first compare the estimation performance for the 2D-MUSIC algorithm and
the LS estimator. As shown in Table 6.1, we consider the transmit SNR (Pp/σ

2)
to be within the range of −10 dB and 60 dB. The UEs are dropped by selecting
uniformly spaced points over the angular domain between 60◦ and 120◦, and
between twice the aperture size and the Fraunhofer array distance to ensure
radiating near-field conditions. In Fig. 6.1, we provide the CRBs on the channel
estimation NMSE for parametric and non-parametric estimators in blue and black
solid lines, respectively. Then, we provide the NMSEs achieved by the 2D-MUSIC
algorithm and the LS estimator with green and red lines.

The parameter undergoes a known linear transformation when considering
the system model non-parametrically. Then, it is corrupted by additive Gaus-
sian noise with known statistics. Therefore, the LS estimator achieves the CRB
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Table 6.1: List of parameters used to generate the numerical results.

Parameter Value
N 32
L 40
K 4 in Fig. 6.1, 2 in Fig. 6.2

SNR −10, 0, . . . , 60 dB
λ 10 cm

exactly. On the other hand, the 2D-MUSIC algorithm performs worse than the
parametric CRB at low SNR, where the algorithm performance is noise-limited.
When the SNR is higher than 20 dB, however, the 2D-MUSIC algorithm per-
formance achieves the parametric CRB, showing that the MUSIC algorithm is
asymptotically consistent. In addition, note that 2D-MUSIC consistently outper-
forms LS at all SNRs.

Location Dependence of the CRB

We will now demonstrate how the parametric CRB changes based on the UE
location. To this end, we consider K = 2 UEs and fix the SNR to 40 dB. In
addition, we fix the location of UE 1, denoted by the red dot in Fig. 6.2. Then,
we compute the CRB on the parametric channel estimation NMSE for UE 2 over
a rectangular region, as shown in Fig. 6.2, where the color bar shows the CRB
value. While the antenna array is located at the origin, we choose our rectangular
region so all the points are further than twice the aperture size and closer than
the Fraunhofer distance to the antenna array.

Note that the CRB increases as the UE moves towards the sides of the region
and as the distance increases. On the other hand, the performance is not affected
by UE 2’s proximity to UE 1. This is because the system has enough observations
and spatial degrees of freedom to accurately resolve the two UEs.

6.6 Conclusions

In this letter, we considered the parametric channel estimation problem, where the
UEs are within the radiative near field of the BS array. We used the 2D-MUSIC
algorithm, which estimates the range and azimuth AoAs of the UEs’ channels, and
obtained the channel estimates using the parametric near field channel models
for aperture antennas. To evaluate the channel estimation performance of 2D-
MUSIC, we derived the CRB of parametric channel estimation in closed form and
compared the 2D-MUSIC algorithm with a non-parametric estimator, namely the
LS estimator. Our numerical results showed that 2D-MUSIC outperforms the LS
estimator, and achieves the parametric channel estimation CRB outside the noise-
limited region. In addition, we also demonstrated that the 2D-MUSIC algorithm
performance is close to the CRB and hence is an efficient method to estimate the
channel parametrically.
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Figure 6.1: SNR versus NMSEs of parametric and non-parametric channel estimation
along with parametric and non-parametric CRBs, for the parameters specified in Table 6.1.
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Figure 6.2: CRB of channel estimation for the second UE when the first UE’s location
is fixed. The SNR is fixed at 40 dB.





Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we have covered multiple topics related to the signal processing
aspects of RIS-aided wireless communication systems. The main focuses of this
thesis were the newly discovered inter-operator pilot contamination and paramet-
ric channel estimation. In Chapters 2, 3, and 4, we have covered the first topic.
In Chapters 5 and 6, we have covered the second topic. We have shown that
both research directions are significant for using RISs in wireless communication
systems.

In the first three articles, we have investigated a new kind of pilot contami-
nation effect occurring when multiple RISs are deployed in close proximity. As
opposed to multiple UEs using the same pilot sequences contaminating each oth-
ers’ signal in traditional pilot contamination, in multi-RIS pilot contamination,
the UE contaminates its own pilot by transmitting over multiple RISs using the
same sequence of pilot RIS configurations, essentially creating a virtual twin of
the transmitting UE using the same pilot sequence and transmitting over the
same RIS. Since there is only a single transmitting UE, it is impossible to resolve
the multi-RIS pilot contamination via pilot signal design. Instead, the sequences
of RIS configurations should be designed such that the individual paths can be re-
solved at the BS. To this end, we proposed the orthogonalization of the sequences
of RIS configurations during channel estimation, which doubled the channel es-
timation overhead, which already has a linear complexity in the number of RIS
elements. When the BS has a single antenna, it is not possible to mitigate this
effect without relying on specific channel structures.

In Chapters 2 and 3, we have analytically characterized the impact of inter-
operator pilot contamination in RIS-aided wireless systems. However, the analysis
was limited to the case when the BS has a single antenna. As modern wireless
communication systems use multiple antennas due to the evolution of MIMO
technology, we extended our analysis to systems with multiple BS antennas in

117



118 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Chapter 4. With the addition of multiple antennas to the system, we also gained
an additional tool: receive beamforming. Receive beamforming gave us the capa-
bility of obtaining different gains from different channels, and we proposed using
this capability to overcome inter-operator pilot contamination. We considered a
baseline scheme along with two alternative schemes to overcome inter-operator
pilot contamination. First, we considered a scheme that uses MRC to focus the
receiver array towards the intended channel to boost the received signal power.
In this scheme, the RIS configurations were orthogonalized to overcome inter-
operator pilot contamination at the expense of doubling the number of pilots. In
the second scheme, we considered using null forming towards the channel between
the other operator’s RIS and the BS, the main source of inter-operator pilot con-
tamination. In this approach, the RIS configurations were not orthogonalized
and hence fewer pilots were used. We also considered a baseline scheme that
does not combat inter-operator pilot contamination in any way. Our analysis has
shown that nulling the interfering channel results in superior spectral efficiency.
While null forming in the second scheme stole some power from the main beam,
it used half as many pilots as the first scheme and hence beat the first scheme
and the baseline scheme by a good margin. Consequently, our findings lead us to
the conclusion that the best way to eliminate inter-operator pilot contamination
is by receive beamforming.

In Chapter 5, we have addressed the use of parametric channel models to
estimate channels in RIS-aided communication systems. Due to the presence of
RISs, the number of channel components to be estimated increases multiplicative
with increasing number of RIS elements. Consequently, the pilot transmission
requirements for systems with massive RISs become unmanageable and hence
impractical. To mitigate this effect, we considered modeling the channels of in-
terest parametrically when LOS conditions exist. In Chapter 5, we considered a
two-RIS system with a far-field UE and modeled the UE-RIS channels depending
on the UE location. This reduced the number of unknown parameters, and hence
the minimum number of pilots to estimate the channel. In Chapter 5, we analyti-
cally derive the CRLB on the estimation of location parameters and the channel,
and consequently show that parametrization not only provides the capability of
estimating the UE location but also boosts the channel estimation performance.

In Chapter 6, we considered an XL-MIMO system consisting of a single BS
with a large antenna array and multiple UEs located within the radiative near
field of the BS antenna. Using parametric near-field channel models, we estimated
the distances and the azimuth angles of the UEs using the 2D-MUSIC algorithm.
We also derived the CRLB for near-field MU-MIMO with aperture antennas. We
showed that the 2D-MUSIC algorithm is asymptotically consistent and efficient by
comparing the channel estimation NMSE against the CRLB. While this study did
not include an RIS, the ideas used in this study apply to RIS-aided communication
systems.
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7.2 Future Work

In this thesis, we discovered, analyzed, and proposed solutions for inter-operator
pilot contamination. In addition, we developed important analytical results for
parametric channel estimation. However, the analysis for the latter case only
applies to pure-LOS conditions, which is usually not the case in real wireless
communication systems. Therefore, a more generalized analysis is required to
cover hybrid cases where the channel has a LOS component and Non-Line of
Sight (NLOS) fading components. In addition, implementing non-linear estima-
tors for the parametric estimation framework and comparing their performance
with the CRLB for channel estimation and positioning derived in Chapter 5 is a
promising step. Even then, for practical applications, remedies for channels with
NLOS components should be devised. Another interesting extension would be
localization-aided channel estimation, where localization information is utilized
to improve the channel estimation performance. Moreover, we always assumed
continuous RIS-configuration phases in our studies. Considering discrete phases
will probably result in mixed integer optimization problems or search problems,
however, such a research direction will help the RIS technology become a reality.
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[23] E. Björnson, Ö. Özdogan, and E. G. Larsson, “Reconfigurable intelligent sur-
faces: Three myths and two critical questions,” no. 12, pp. 90–96, 2020.

[24] L. Wei, C. Huang, G. C. Alexandropoulos, C. Yuen, Z. Zhang, and M. Debbah,
“Channel estimation for RIS-empowered multi-user MISO wireless communica-
tions,” IEEE Transactions on Communications, vol. 69, no. 6, pp. 4144–4157,
2021.

[25] C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and C. Yuen,
“Reconfigurable intelligent surfaces for energy efficiency in wireless communi-
cation,” vol. 18, no. 8, pp. 4157–4170, 2019.

[26] N. Garg, H. Ge, and T. Ratnarajah, “Generalized superimposed training
scheme in IRS-assisted cell-free massive mimo systems,” IEEE Journal of Se-
lected Topics in Signal Processing, vol. 16, no. 5, pp. 1157–1171, 2022.

[27] 3GPP, “NR; Physical channels and modulation,” Technical Specification (TS)
38.211, 3rd Generation Partnership Project (3GPP), 09 2022. Version 17.4.0.

[28] S. M. Kay, Fundamentals of Statistical Signal Processing, Volume I: Estimation
Theory. Prentice Hall, 1993.

[29] G. Fodor, N. Rajatheva, W. Zirwas, L. Thiele, M. Kurras, K. Guo, A. Tolli,
J. H. Sorensen, and E. De Carvalho, “An overview of massive MIMO technol-
ogy components in METIS,” IEEE Communications Magazine, vol. 55, no. 6,
pp. 155–161, 2017.
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