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a b s t r a c t 

The optimal power adaptation problem is investigated for vector parameter estimation according to vari- 

ous Fisher information based optimality criteria. By considering an observation model that involves a lin- 

ear transformation of the parameter vector and an additive noise component with an arbitrary probability 

distribution, six different optimal power allocation problems are formulated based on Fisher information 

based objective functions. Via optimization theoretic approaches, various closed-form solutions are de- 

rived for the proposed problems. Also, the results are extended to cases in which nuisance parameters 

exist in the system model or certain types of nonlinear transformations are applied on the parameter 

vector. Numerical examples are presented to investigate performance of the proposed power allocation 

strategies. 
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. Introduction 

In vector parameter estimation, the aim is to design an op- 

imal estimator for a number of unknown parameters based on 

 set of observations. The design of an optimal estimator com- 

only involves the calculation of posterior distributions or likeli- 

ood functions based on the statistical relation between the obser- 

ation and the parameter vector. If the prior distribution of param- 

ters is known, the Bayesian approach can be adopted and estima- 

ors such as the minimum mean squared error (MMSE) estimator, 

he minimum mean absolute error (MMAE) estimator, or the maxi- 

um a posteriori probability (MAP) estimator can be derived based 

n the posterior distribution, i.e., the probability distribution of the 

arameter vector given the observation [1] . On the other hand, in 

he absence of prior information, parameters can be modeled as 

 deterministic unknown vector and estimators such as the min- 

mum variance unbiased estimator (MVUE), the maximum likeli- 

ood (ML) estimator, or the best linear unbiased estimator (BLUE) 

an be employed for vector parameter estimation [2] . 

Performance of the aforementioned estimators depends on sys- 

em parameters such as noise variance and transformations acting 

n the parameter vector, and it is usually challenging to find ex- 

ct and closed-form expressions for estimation errors of the corre- 
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ponding estimators. Therefore, in order to assess estimation per- 

ormance, various theoretical bounds such as the Cramér-Rao lower 

ound (CRLB), Ziv-Zakai lower bound (ZZLB), and Barankin-type 

ounds are used as gold standards [3] . Such bounds are mainly 

etermined by the statistics of the observation, which depends on 

ystem parameters. This means that for a given system model, es- 

imation performance can be improved only to a certain extent by 

sing an optimal estimator. In order to realize further improve- 

ents in estimation performance, the effects of the system on the 

arameter vector should be adapted. One common way of achiev- 

ng such an improvement is to perform power adaptation, i.e., 

ransmitting different components of the parameter vector with 

ifferent power levels [4] . Since the total available power is usu- 

lly limited [5] , the problem of power adaptation arises as a con- 

trained optimization problem. In this manuscript, the aim is to 

evelop optimal power allocation strategies for vector parameter 

stimation in the absence of prior information by using Fisher in- 

ormation based optimality criteria [2, Section IV.E.1] , [6] , [7, Sec- 

ion 9.2.1] ,. 

Power adaptation and in general resource allocation have been 

onsidered for various estimation problems in the literature. For 

xample, in wireless sensor networks (WSNs), the problem of op- 

imal resource allocation for vector parameter estimation with re- 

pect to various performance metrics is the main focus in many 

tudies. In [8] , the optimal transmit power allocation and quantiza- 

ion rate allocation schemes are investigated to minimize the aver- 

ge mean squared error (MSE). In [9] , the optimal power allocation 
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1 
trategy that minimizes the � 2 -norm of the transmit power vector 

s derived under a maximum variance constraint for the best linear 

nbiased estimator. In addition, the optimal codebook is computed 

ia the Lloyd algorithm when the channel state information (CSI) is 

imited, which is usually the case for large WSNs. In [4] , estimation 

f an unknown Gaussian random vector with known mean vec- 

or and covariance matrix is considered in a WSN setting, where 

he fusion center uses the linear MMSE (LMMSE) estimator to es- 

imate the parameter vector based on sensor observations, which 

re fading channel impaired and noise corrupted versions of the 

ransmitted parameter vector. An upper bound on the MSE is min- 

mized by first computing the optimal bit allocation to minimize 

he MSE distortion. Then, the optimal power allocation strategy is 

omputed to minimize the channel errors. In [10] , optimal power 

llocation for vector parameter estimation is investigated with the 

im of maximizing the average Bayesian Fisher information be- 

ween the random parameter vector and the observation vector. In 

11] , optimal power allocation schemes for LMMSE estimation are 

erived by taking channel estimation errors into account. In [12–

1] , the optimal power allocation problem is considered for posi- 

ion estimation in wireless localization and radar systems. In [14] , 

he transmit power allocation problem is formulated as a semidef- 

nite program by using the squared position error bound as the 

bjective function. In [18] , the total transmit power is minimized 

y imposing a constraint on the CRLB for target localization in a 

istributed multiple-radar system. In addition, the dual problem of 

RLB minimization for a predefined total power budget is consid- 

red. 

It is noted that theoretical lower bounds for estimation error 

re commonly used in the literature to define optimality crite- 

ia for developing power adaptation strategies in estimation prob- 

ems [10,12–25] . In the absence of prior information, lower bounds 

enerated from the Fisher information matrix (FIM) are usually 

dopted due to their practicality. As the most widely used bound, 

he CRLB is obtained as the inverse of the FIM and specifies a 

ower limit on the covariance matrix of any unbiased estimator 

ith respect to the positive semidefinite cone. Various scalariza- 

ions of the FIM are employed in the literature [18,23,25] . In par- 

icular, the log-determinant of the FIM, the maximum (minimum) 

igenvalue of the CRLB (FIM), the maximum diagonal entry of the 

RLB, the trace of the FIM, and the minimum diagonal entry of 

he FIM are utilized for quantifying estimation performance from 

arious perspectives such as estimation robustness and probabilis- 

ic confinement of estimator error [7, Section 9.2.1] , [26–31] . In 

his manuscript, the power adaptation problem for vector param- 

ter estimation is considered according to such Fisher information 

ased optimality criteria and the corresponding optimal strategies 

re characterized. 

Although there exist a multitude of studies on power allo- 

ation for various estimation problems in the literature, a gen- 

ral investigation of the optimal power allocation problem for 

ector parameter estimation according to various Fisher informa- 

ion based criteria is not available to the best of authors’ knowl- 

dge. In particular, we consider a generic additive noise model, 

here the observation vector is a linear function of the param- 

ter vector corrupted by additive noise with an arbitrary proba- 

ility distribution. Based on this model, we first present the FIM 

n terms of the system parameters, including the power allo- 

ation parameters. Then, we formulate optimal power allocation 

roblems according to six different estimation performance crite- 

ia based on the FIM, and derive various closed-form solutions. 

e also extend our results to cases in which nuisance param- 

ters exist in the problem or certain types of nonlinear trans- 

ormations are applied on the parameter vector. The main con- 

ributions and novelty of this manuscript can be summarized as 

ollows: 
2 
• According to various Fisher information based optimality crite- 

ria, we propose optimal power allocation problems for vector 

parameter estimation by considering a system model, where 

the parameter vector is processed by a linear transformation 

and corrupted by additive noise with a generic probability dis- 

tribution. 
• Based on optimization theoretic approaches, we provide various 

closed-form solutions for the proposed power allocation prob- 

lems. 
• We show that the proposed optimal power allocation strategies 

are also valid for nonlinear system models under certain condi- 

tions and in the presence of nuisance parameters. 

In addition, we provide numerical examples to illustrate the 

erformance of the proposed strategies and compare them with 

he equal power allocation strategy. It should be noted that pro- 

iding closed-form solutions for optimal power allocation is im- 

ortant for real-time applications due to delay and computational 

omplexity requirements. 

The rest of the manuscript is organized as follows: The sys- 

em model is presented in Section 2 and optimal power allocation 

trategies are derived in Section 3 . In Section 4 , extensions to non-

inear models and presence of nuisance parameters are considered. 

umerical results are provided in Section 5 followed by the con- 

luding remarks in Section 6 . 

. System model 

Consider the following linear 1 model relating a vector of un- 

nown deterministic parameters θ = [ θ1 , . . . , θk ] 
T ∈ R 

k with their 

easurements X ∈ R 

n : 

 = F T P θ + N (1) 

n (1) , F is a k × n real matrix with full row rank ( k ≤ n ) that is

ssumed to be known, N ∈ R 

n is the additive noise vector with a 

oint probability density function f N (·) , which is independent of θ, 

nd P is a k × k diagonal power allocation matrix (to be optimized) 

xpressed as 

 = 

⎡ 

⎣ 

√ 

p 1 0 

. . . 

0 

√ 

p k 

⎤ 

⎦ (2) 

ubject to the total power constraint 

k 
 

i =1 

p i ≤ P � (3) 

here p i denotes the power allocated to the parameter θi and P �
enotes the (available) total power. For the linear model given in 

1) , the FIM of the measurement vector X with respect to the pa- 

ameter vector θ is obtained as [32, Lemma 5] . 

 (X ; θ) = PFI (N ) F T P , (4) 

here P = P 

T is employed, and I (N ) is a special form of the FIM,

amely the FIM of the random vector N with respect to a transla- 

ion parameter φ [32, Eq. (8)] , defined as 

 (N ) = I ( φ + N ;φ) = 

∫ 
1 

f N (n ) 

(
∂ f N (n ) 

∂n 

)(
∂ f N (n ) 

∂n 

)T 

dn (5) 

t is noted that the FIM under translation is a function of only the 

robability density function (pdf) of the random vector N , and con- 

equently, I (X ; θ) in (4) does not depend on the parameter vector 
Extensions to nonlinear models are presented in Section 4 . 
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2 This fact can also be seen by noting that the objective function in (10) is a 

decreasing function of p i ’s. 
. It is assumed that the noise pdf f N (·) satisfies certain regularity 

onditions so that the FIM in (5) exists [33] . 

In the following, we provide closed-form solutions for optimal 

ower allocation problems by considering various estimation accu- 

acy criteria based on the FIM in (4) . 

. Optimal power allocation for vector parameter estimation 

.1. Average mean squared error criterion 

The inverse of the FIM, known as the Cramer-Rao lower bound 

CRLB) provides a lower bound on the MSE of any unbiased esti- 

ator ˆ θ(X ) via the following matrix inequality [2] : 

ov ( ̂  θ(X )) ≥ I −1 (X ; θ) (6) 

here Cov ( ̂ θ(X )) = E[( ̂ θ(X ) − θ)( ̂ θ(X ) − θ) T ] due to the unbiased-

ess and the expectation is taken with respect to the pdf of X 

iven θ. Consequently, the lower bound on the average MSE of the 

ector parameter can be stated as 

 

[‖ ̂

 θ(X ) − θ‖ 

2 
]

≥ tr { I −1 (X ; θ) } (7) 

onsideration of the lower bound in (7) as a performance metric in 

ptimal design problems is referred as the A-optimality criterion in 

he literature [7,22,26] . 

The optimal power allocation problem that minimizes the lower 

ound on the average MSE subject to a sum-power constraint can 

e formulated as 

in { p i } k i =1 
tr { I −1 (X ; θ) } 

.t. 
∑ k 

i =1 p i ≤ P �
p i ≥ 0 , i = 1 , 2 , . . . , k 

(8) 

or the convenience of notation, two system dependent matrices 

an be defined as 

 � FI (N ) F T 

 � J −1 (9) 

rom (4) and (9) , the FIM with respect to the parameter vec- 

or θ and the corresponding CRLB are expressed respectively as 

 (X ; θ) = PJP and I −1 (X ; θ) = P 

−1 AP 

−1 . Then, the objective function

n (8) can be written in terms of the power allocation coefficients 

nd the diagonal entries of A as 

r { I −1 (X ; θ) } = tr { P 

−1 AP 

−1 } 
= tr { (P 

−1 ) 2 A } 
= 

∑ k 
i =1 

a ii 
p i 

(10) 

here a ii denotes the i th diagonal entry of A . It is noted that the

IM is assumed to be positive-definite for the existence of the 

RLB. Therefore, A and J in (9) have positive diagonal entries. 

As the objective function is convex (see (10) ) and the con- 

traints are linear, the problem in (8) is a convex optimiza- 

ion problem. In addition, Slater’s condition holds [27] . Therefore, 

arush-Kuhn-Tucker (KKT) conditions are necessary and sufficient 

or optimality. From (10) , the Lagrangian for (8) is expressed as 

 

({ p i } k i =1 , { υi } k +1 
i =1 

)
= 

k ∑ 

i =1 

a ii 
p i 

+ υ1 

( 

k ∑ 

i =1 

p i − P �

) 

−
k ∑ 

i =1 

υi +1 p i (11) 

here υ1 , . . . , υk +1 are the dual variables. Then, KKT conditions for 

ptimality are obtained as follows [27] : 

• Primal Feasibility: The optimal power allocation strategy { p ∗
i 
} k 

i =1 

must satisfy the constraints 
∑ k 

i =1 p 
∗
i 

≤ P � and p ∗
i 

≥ 0 , ∀ i ∈ 

{ 1 , . . . , k } . 
• Dual Feasibility: The dual variables must be non-negative, i.e., 

υ∗
i 

≥ 0 for i = 1 , . . . , k + 1 . 
3 
• Stationarity: The derivatives of the Lagrangian in (11) with re- 

spect to p i must be equal to zero at p i = p ∗
i 

for i = 1 , . . . , k . That

is, 

∂L 

∂ p i 

∣∣∣
p i = p ∗i 

= − a ii 
(p ∗

i 
) 2 

+ υ∗
1 − υ∗

i +1 = 0 (12) 

for i = 1 , . . . , k . 
• Complementary Slackness: At the optimal solution, the following 

conditions hold: 

υ∗
1 

( 

k ∑ 

i =1 

p ∗i − P �

) 

= 0 (13) 

υ∗
i +1 p 

∗
i = 0 , i = 1 , . . . , k (14) 

For the condition in (13) , the case of υ∗
1 

= 0 is not possible

ince the derivative in (12) could be set to zero only for p ∗
i 

→ ∞
n that case (for some positive a ii ), which would violate the primal 

easibility condition. Therefore, (13) implies that υ∗
1 

> 0 and 

k 
 

i =1 

p ∗i = P � (15) 

hat is, full-power utilization is required for optimality. 2 Then, 

wo cases are investigated depending on the values of a ii ’s. Let 

 z and A p denote the sets of indices i for which a ii ’s are zero

nd positive, respectively. That is, A z = { i ∈ { 1 , . . . , k } | a ii = 0 } and

 p = { i ∈ { 1 , . . . , k } | a ii > 0 } . 
Case 1: Consider an index i such that i ∈ A z . Suppose that p ∗

i 
>

 . Then, (14) implies that υ∗
i +1 

= 0 and the expression in (12) be-

omes equal to υ∗
1 

. However, υ∗
1 

> 0 as discussed before, which 

eads to a contradiction (i.e., the stationary condition could not be 

atisfied). Hence, it is concluded that 

p ∗i = 0 for i ∈ A z . (16) 

Case 2: Consider an index i such that i ∈ A p . In that case, it can

e concluded from (12) –(14) that p ∗
i 

> 0 and υ∗
i +1 

= 0 for i ∈ A p .

hen, (12) leads to 

p ∗i = 

√ 

a ii 
υ∗

1 

for i ∈ A p (17) 

From (15) , a relation for υ∗
1 

can be obtained as 

k 
 

j=1 

p ∗j = 

∑ 

j∈A p 
p ∗j = 

∑ 

j∈A p 

√ 

a j j 

υ∗
1 

= P �, (18) 

hich yields 

1 √ 

υ∗
1 

= 

P �∑ 

j∈A p 
√ 

a j j 

= 

P �∑ k 
j=1 

√ 

a j j 

(19) 

Based on (16), (17) and (19) , the optimal power allocation strat- 

gy to minimize the average MSE in (8) is specified as follows: 

p ∗i = 

P �
√ 

a ii ∑ k 
j=1 

√ 

a j j 

, i = 1 , . . . , k (20) 

ence, a closed-form solution to the problem in (8) is obtained. 

.2. Shannon information criterion 

An alternative criterion for estimation accuracy is to maximize 

he log-determinant of the FIM, i.e., 

 S (X ; θ) = log det I (X ; θ) (21) 
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hich is associated with the volume of the confidence ellipsoid 

ontaining the estimation error [27, Section 7.5.2] . This criterion 

s known as the Shannon information criterion, and also the D- 

ptimal design in the literature [22,26,28,29] . 

The optimal power allocation problem with the objective of 

aximizing the Shannon information under the sum-power con- 

traint can be expressed as 

ax { p i } k i =1 
log det I (X ; θ) 

 . t . 
∑ k 

i =1 p i ≤ P �
p i ≥ 0 , i = 1 , . . . , k 

(22) 

he problem in (22) involves the maximization of a concave func- 

ion, and the feasible region has an interior point; hence, Slater’s 

ondition is satisfied. Consequently, KKT conditions are necessary 

nd sufficient for optimality. In order to find the optimal solution, 

he Shannon information can be expressed in terms of the known 

atrices. From (4) and (9) , the Shannon information can be writ- 

en as 

og det I (X ; θ) = log det PJP 

= 2 log det P + log det J 

= 

∑ k 
i =1 log p i + log det J 

(23) 

s seen in (23) , the Shannon information separates into a power 

llocation dependent component and a system dependent compo- 

ent, the latter being constant for a fixed F and I (N ) . Therefore, it

uffices to consider 
∑ k 

i =1 log p i in order to maximize the Shannon 

nformation. Therefore, the problem in (22) reduces to 

ax { p i } k i =1 

∑ k 
i =1 log p i 

 . t . 
∑ k 

i =1 p i ≤ P �
p i ≥ 0 , i = 1 , . . . , k 

(24) 

hich is a convex optimization problem. This problem is equiv- 

lent to maximizing the product of nonnegative numbers whose 

um is constant. Hence, its solution can be obtained as 

p ∗i = 

P �
k 

, i = 1 , . . . , k (25) 

hat is, the optimal power allocation strategy according to the 

hannon information criterion is to allocate equal power to all the 

arameters at the sum-power limit. Corresponding to the optimal 

trategy, the maximum Shannon information is achieved as 

 

∗
S (X ; θ) = k log 

(
P �
k 

)
+ log det J . (26) 

.3. Worst-case error variance criterion 

The worst-case error variance criterion is a measure of robust- 

ess rather than average estimation accuracy and is associated 

ith the maximum eigenvalue of the CRLB [27,30] . In order to re- 

uce the worst-case error variance, the maximum eigenvalue of 

he CRLB can be minimized. Optimality according to this criterion 

s also known as E-optimality, where the minimum diameter of the 

IM is maximized [22,26,31] . When variances vary significantly, the 

onfidence ellipsoid can have very different diameters along differ- 

nt dimensions; hence, the log-volume minimization approach in 

he D-optimal design can be misleading [26,31] . 

The optimal power allocation strategy that minimizes the max- 

mum eigenvalue of the CRLB corresponds to maximizing the min- 

mum eigenvalue of the FIM. Hence, the following problem can be 

onsidered: 

ax { p i } k i =1 
λmin { I (X ; θ) } 

.t. 
∑ k 

i =1 p i ≤ P �
p i ≥ 0 , i = 1 , . . . , k 

(27) 

rom (4) and (9) , I (X ; θ) in (27) can be expressed as I (X ; θ) = PJP ,

here J is positive semi-definite and P is diagonal (see (2) ). It can
4 
e shown that the eigenvalues of PJP are the same as those of P 

2 J

ased on their characteristic equations. However in general, there 

s not a closed-form relationship between the eigenvalues of P 

2 

nd J and the eigenvalues of their product. Therefore, it is chal- 

enging to obtain a closed-form solution to (27) . One way to solve 

27) is to apply global optimization tools such as particle swarm 

ptimization (PSO) or the multistart algorithm [34] . This approach 

s adopted in Section 5 to obtain the solution of (27) . 

To perform further investigations on the problem in (27) , we 

an derive a bound on the objective function in (27) . To that aim,

he following lemma can be utilized to provide bounds for the 

igenvalues of the FIM, I (X ; θ) . 

emma 1. Let G , T ∈ R 

n ×n , G 

T = G , T T = T , rank (G ) = rank (T ) = n

nd R = GT . Let { νi } n i =1 
, { μi } n i =1 

and { γi } n i =1 
denote, respectively, the

igenvalues of G , T and R increasing in the absolute value. Then, 

 ν1 || μ1 | ≤ | γ1 | ≤ · · · ≤ | γn | ≤ | νn || μn | (28) 

roof. For the Euclidean matrix norm, it is known that ‖ GT ‖ ≤
 G ‖‖ T ‖ . In addition, the norm of a symmetric matrix is equal

o its spectral radius, i.e., ‖ G ‖ = max j | ν j | and ‖ T ‖ = max j | μ j | .
herefore, ‖ R ‖ = ‖ GT ‖ ≤ ‖ G ‖‖ T ‖ = | νn || μn | . Since R is the prod-

ct of two symmetric matrices, it is also symmetric. Therefore, 

 R ‖ = | γn | . Hence, the upper bound on the absolute value of the

aximum eigenvalue of R is obtained as | γn | ≤ | νn || μn | . Since

ank (G ) = rank (T ) = n , the lower bound can be derived via in-

ersion; that is, R 

−1 = T −1 G 

−1 . Therefore, ‖ R 

−1 ‖ = ‖ T −1 G 

−1 ‖ ≤
1 

| ν1 || μ1 | . Through the same reasoning, ‖ R 

−1 ‖ = 

1 
| γ1 | . Hence, the re- 

ation of 1 
| γ1 | ≤

1 
| ν1 || μ1 | is obtained, which yields the lower bound 

n (28) . �

Lemma 1 can be used to derive a lower bound on the objective 

unction in (27) as follows: 

min { I (X ; θ) } = λmin { P 

2 J } ≥ λmin { J } min 

i ∈{ 1 , ... ,k } 
p i (29)

here λmin { J } denotes the minimum eigenvalue of J . In (29) , the

bsolute value operators in (28) are not used since all the eigen- 

alues are non-negative and the eigenvalues of P 

2 are taken as 

 p 1 , . . . , p k } based on (2) . 

Instead of maximizing the minimum eigenvalue of I (X ; θ) in 

27) , consider the maximization of the lower bound on it. As noted 

rom (29) , the lower bound on the minimum eigenvalue of I (X ; θ) 

epends on the minimum power allocated to an individual param- 

ter. Therefore, instead of (27) , we get the following convex opti- 

ization problem: 

ax { p i } k i =1 
min j∈{ 1 , ... ,k } p j 

 . t . 
∑ k 

i =1 p i ≤ P �
p i ≥ 0 , i = 1 , . . . , k 

(30) 

he problem in (30) is a minimax problem over a scaled k -simplex. 

herefore, its solution is an equalizer rule [2] , leading to p ∗1 = p ∗2 =
· · = p ∗

k 
with 

∑ k 
i =1 p 

∗
i 

= P � . Hence, the solution of (30) is given 

y p ∗
i 

= P �/k for i = 1 , . . . , k ; that is, the optimal power allocation

trategy to maximize (minimize) the lower (upper) bound on the 

inimum (maximum) eigenvalue of the FIM (CRLB) is the equal 

ower allocation strategy. Consequently, the lower bound on the 

inimum eigenvalue of I (X ; θ) becomes λmin { J } P �/k . 

Remark 1: The preceding analysis indicates that the equal power 

llocation strategy solves the problem of maximizing a lower bound 

n the objective function in ( 27 ). Hence, it does not necessarily yield 

he optimal power allocation strategy. (The numerical example in 

ection 5.3 illustrates this fact.) 
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.4. Worst-case coordinate error variance criterion 

As an alternative measure of robustness, one can consider the 

orst-case coordinate error variance, which is bounded by the 

argest diagonal entry of the CRLB; i.e., max j∈{ 1 , ... ,k } [ I −1 ( X ; θ)] j, j . 

his criterion is referred as G-optimality [7,26] , and it has the ef- 

ect of reducing the worst-case error variance as well. 

From (10) , the jth diagonal entry of the CRLB can be expressed 

s 

 I −1 (X ; θ)] j, j = 

a j j 

p j 
(31) 

herefore, the problem of minimizing the maximum diagonal entry 

f the CRLB can be formulated as 

in { p i } k i =1 
max j∈{ 1 , ... ,k } 

a j j 

p j 

 . t . 
∑ k 

i =1 p i ≤ P �
p i ≥ 0 , i = 1 , . . . , k 

(32) 

he problem in (32) is a convex optimization problem, it can be 

hown that the solution of (32) satisfies 
∑ k 

i =1 p 
∗
i 

= P � and 

a ii 
p ∗

i 

= α, ∀ i ∈ { 1 , . . . , k } (33) 

here α is a constant (i.e., an equalizer solution [35] ). Then, pa- 

ameter α in (33) obtained from 

k 
 

i =1 

p ∗i = 

1 

α

k ∑ 

i =1 

a ii = P � (34) 

hich yields 

= 

tr { A } 
P �

· (35) 

ence, the optimal power allocation strategy is given by 

p ∗i = 

P � a ii 
tr { A } , i = 1 , . . . , k (36) 

hen the optimal power allocation strategy is employed, the diag- 

nal entries of the CRLB are the same, and the worst-case coordi- 

ate error variance becomes α = tr { A } / P � . 

.5. Average Fisher information criterion 

When the aim is to estimate a vector of parameters, the av- 

rage Fisher information indicates the overall usefulness of the ob- 

ervation vector to estimate the parameter vector. The informative- 

ess of the observation vector to estimate the i th parameter corre- 

ponds to the i th diagonal entry of the FIM. Therefore, the average 

isher information is related to the trace of the FIM. Accordingly, 

he optimal power allocation problem for maximizing the trace of 

he FIM is formulated as follows: 

ax { p i } k i =1 
tr { I (X ; θ) } 

 . t . 
∑ k 

i =1 p i ≤ P �
p i ≥ 0 , i = 1 , . . . , k 

(37) 

rom (4) and (9) , the objective function in (37) can be rewritten in

erms of the known matrices as 

r { I (X ; θ) } = tr { PJP } = 

k ∑ 

i =1 

p i j ii (38) 

here j ii � [ J ] i,i . Based on (38) , the problem in (37) can be con-

erted to a linear program (LP) by defining 

 � diag (PP 

T ) = [ p 1 . . . p k ] 
T (39) 

 � diag (J ) = [ j 11 . . . j kk ] 
T , (40) 
5 
nd expressing (37) as 

ax p j T p 

 . t . 1 

T p ≤ P �
p ≥ 0 

(41) 

he solution of (41) is provided in the following proposition. 

roposition 1. Let i ∗ denote the index of the maximum element of j 

n (40) ; i.e., i ∗ = arg max l∈{ 1 , ... ,k } j ll . Then, the optimal power alloca- 

ion strategy that maximizes the average Fisher information under the 

um-power constraint is given by p 

∗ = [ p ∗
1 
· · · p ∗

k 
] T , where 

p ∗i = 

{
P �, i = i ∗

0 , otherwise 
(42) 

or i = 1 , . . . , k . (In case of multiple maxima, the indices of any non-

mpty subset can be selected.) 

Proposition 1 states that in order to maximize the average 

I, the whole power must be allocated to the parameter corre- 

ponding to the maximum diagonal entry of J . When the optimal 

ower adaptation strategy is used, the average Fisher information 

chieves a maximum value of P � max i j ii . 

.6. Worst-case coordinate Fisher information criterion 

Depending on the system properties, the observation vector can 

e more informative about some parameters and less informative 

bout the others. Consequently, the estimation performance of in- 

ividual parameters can vary to some extent. Such variations can 

e undesirable as certain performance requirements should be sat- 

sfied for estimation of all parameters. To alleviate this effect, one 

pproach is to maximize the minimum Fisher information con- 

ained the observation vector w.r.t. individual parameters. Such an 

ptimization increases the robustness of estimation against accu- 

acy variations. 

The minimum Fisher information contained in the observation 

ector w.r.t. individual parameters is called the worst-case coordi- 

ate FI, which corresponds to the minimum diagonal entry of the 

IM, that is, min i ∈{ 1 , ... ,k } [ I (X ; θ)] i,i . Based on this objective function, 

he following maximization problem is defined under the sum- 

ower constraint: 

ax { p i } k i =1 
min i ∈{ 1 , ... ,k } [ I (X ; θ)] i,i 

 . t . 
∑ k 

i =1 p i ≤ P �
p i ≥ 0 , i = 1 , . . . , k 

(43) 

ased on (38) , the objective function in (43) can be written as 

in 

i 
[ I (X ; θ)] i,i = min 

i 
p i j ii (44) 

hen, (43) is observed to have a very similar form to the problem 

n (30) . Hence, the same steps can be followed and it can be shown

hat the solution of (43) satisfies 
∑ k 

i =1 p 
∗
i 

= P � and 

p ∗i j ii = ˜ α, ∀ i ∈ { 1 , . . . , k } (45)

here ˜ α is a constant that is specified by 

k 
 

i =1 

p ∗i = 

k ∑ 

i =1 

˜ α

j ii 
= P � (46) 

rom (46) , ˜ α is obtained as 

˜ = 

P �∑ k 
i =1 

1 
j ii 

. (47) 

herefore, the optimal power allocation strategy becomes 

p ∗i = 

P �

j ii 
∑ k 

l=1 
1 
j 

, i = 1 , . . . , k (48) 
ll 
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hen the optimal power allocation strategy is used, the worst case 

isher information achieves a maximum value of P �
/∑ k 

l=1 
1 
j ll 

. It is 

oted that the optimal power allocation strategy in (48) equalizes 

he Fisher information contained in X w.r.t. the i th element of θ for 

ll i ∈ { 1 , . . . , k } ; that is, p ∗
i 

j ii = P �
/∑ k 

l=1 
1 
j ll 

for all i ∈ { 1 , . . . , k } . 

. Extensions 

.1. Presence of nuisance parameters 

In some vector parameter estimation scenarios, only a subset of 

arameters can be of interest for estimation purposes. Let only r

ut of the k parameters be relevant and the remaining k − r pa- 

ameters be nuisance parameters. We assume that the nuisance 

arameters must be transmitted with unit power and power adap- 

ation is not available for them. Without loss of generality, we can 

rrange the vector of parameters to be transmitted as 

= 

[
θγ

θσ

]
(49) 

here θγ ∈ R 

r denotes the vector of relevant parameters, and 

σ ∈ R 

k −r represents the vector of nuisance parameters. Then, the 

ower allocation matrix becomes 

 = 

[
P γ 0 

0 I k −r 

]
(50) 

here I k −r denotes the (k − r) × (k − r) identity matrix. Under the 

ame system model, matrix J defined in (9) can be expressed as 

 = 

[
J γ B 

B 

T J σ

]
(51) 

here J γ ∈ R 

r×r and J σ ∈ R 

(k −r) ×(k −r) are the components of J cor- 

esponding to the parameters of interest and the nuisance parame- 

ers, respectively, and matrix B ∈ R 

r ×(k −r ) and its transpose are the 

ross-terms. Similarly, matrix A in (9) , i.e., A � J −1 , can also be ar-

anged as 

 = 

[
A γ C 

C 

T A σ

]
(52) 

here C ∈ R 

r ×(k −r ) and its transpose are the cross-terms. Based on 

50), (51) , and (52) , the FIM and the CRLB can be expressed as 

 (X ; θ) = PJP = 

[
P γ J γ P γ P γ B 

B 

T P γ J σ

]
(53) 

 

−1 (X ; θ) = P 

−1 AP 

−1 = 

[
P 

−1 
γ A γ P 

−1 
γ P 

−1 
γ C 

C 

T P 

−1 
γ A σ

]
(54) 

he related terms of the FIM and the CRLB are the ones involving 

nly the parameters of interest. In this setting, only the first r rows 

nd the first r columns are taken into account; that is, 

 γ (X ; θ) = P γ J γ P γ (55) 

 

−1 
γ (X ; θ) = P 

−1 
γ A γ P 

−1 
γ (56) 

here A γ = (J γ − BJ −1 
σ B 

T ) −1 [36] . As seen from above, the power

llocation strategies developed in Section 3 (which are developed 

n the absence of nuisance parameters) can also be used in this 

ase. 
6 
.2. Extension to nonlinear model 

In some practical applications, the linear system model in 

1) may not be valid, and the parameter vector, after power adap- 

ation, can be processed by a nonlinear transformation f (·) as fol- 

ows: 

 = f (P θ) + N (57) 

n this case, the FIM w.r.t. parameter θ can be expressed in the 

ame form as (4) after replacing F with the Jacobian of the vector 

alued function f (·) [32, Lemma 4] . More explicitly, let φ � P θ in

57) , and the Jacobian of f ( φ) w.r.t. its argument φ is given as 

 � 

⎡ 

⎢ ⎢ ⎢ ⎣ 

∂ f 1 
∂φ1 

∂ f 2 
∂φ1 

. . . 
∂ f n 
∂φ1 

∂ f 1 
∂φ2 

∂ f 2 
∂φ2 

. . . 
∂ f n 
∂φ2 

. . . 
. . . 

. . . 
. . . 

∂ f 1 
∂φk 

∂ f 2 
∂φk 

. . . 
∂ f n 
∂φk 

⎤ 

⎥ ⎥ ⎥ ⎦ 

(58) 

f f (·) is continuously differentiable w.r.t. φ and F in (58) does not 

epend on p i ’s for i = 1 , . . . , k , F in (58) can be substituted into

4) , and the developed techniques can be employed without fur- 

her modification for power adaptation in the presence of a non- 

inear system model, as well. If F depends on p i ’s, (58) is still valid;

owever, the objective functions should be modified accordingly, 

eading to possibly nonconvex optimization problems. In that case, 

umerical methods can be employed. On the other hand, if f (·) is 
ot continuously differentiable w.r.t. φ, further analysis is required 

nd new techniques should be developed. 

. Numerical results 

In this section, we provide numerical examples for the opti- 

al power allocation strategies in Section 3 . In all cases, the equal 

ower allocation strategy is also implemented for comparison pur- 

oses. The noise is modeled as a zero-mean Gaussian random vec- 

or with independent components; that is, N ∼ N ( 0 , �) , where 

= Diag (σ 2 
1 , . . . , σ

2 
n ) . For this noise model, the FIM of N in (5) is

btained as 

 (N ) = �−1 = Diag 
(
1 /σ 2 

1 , . . . , 1 /σ 2 
n 

)
(59) 

n the simulations, σ 2 
i 

’s are set to σ 2 
i 

= 10 −7+3(i −1) / (n −1) for i = 

 , . . . , n . The dimension of the parameter vector, k , is varied be-

ween 2 and 30, and the dimension of the observation vector, n , is 

aken to be equal to the number of parameters, i.e., k = n . Also, for

atrix F in (1) , two different scenarios are considered. In the first 

cenario, F = F 1 , where F 1 is the k × k identity matrix ( k = n ), that

s, F 1 = I k ×k . In this scenario, we can observe the effects of power

daptation on the estimation performance when the main source 

f error is additive noise. In the second scenario, F = F 2 , which is

pecified as 

 2 = I k ×k + κV 

T (60) 

ith 

= 

‖ I k ×k ‖ F 
‖ V ‖ F 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

1 1 1 . . . 1 

1 1 + ε (1 + ε) 2 . . . (1 + ε) k −1 

1 1 + 2 ε (1 + 2 ε) 2 . . . (1 + 2 ε) k −1 

. . . 
. . . 

. . . 
. . . 

1 1 . 5 1 . 5 

2 . . . 1 . 5 

k −1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

= 

0 . 5 
k −1 

(61) 

hat is, F 2 is the sum of the k × k identity matrix and the transpose

f a normalized k × k Vandermonde matrix, where the normaliza- 

ion factor κ makes sure that the Frobenius norms of the added 
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Fig. 1. CRLB on the average MSE versus k for the equal and optimal power allocation strategies. 

Fig. 2. Shannon information versus k for the optimal (equal) power allocation strategy. 
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atrices are equal. In this scenario, the entries of the system ma- 

rix F differ from each other significantly, which implies that the 

ystem affects the individual parameters differently. 

In the following, the optimal power allocation strategies are 

btained according to the Fisher information based criteria in 

ection 3 for the considered simulation setup, and the performance 

etrics are plotted against the dimension of the parameter vector, 

 , under a unit sum-power constraint, that is, P � = 0 dB. 

.1. Results for average MSE criterion 

In this case, the problem in (8) is considered, and the CRLBs 

chieved by the optimal power allocation strategy in (20) and by 

he equal power allocation strategy (i.e., p ∗
i 

= P �/k , i = 1 , . . . , k ) are

lotted versus k in Fig. 1 . It is noted that as the dimension of the
7 
arameter vector increases, the CRLB on the average MSE increases 

or both optimal and equal power allocation strategies except for 

he slight initial decrease in the optimal strategy for F = F 2 . It is

lso observed that the optimal power allocation strategy consis- 

ently outperforms the equal power allocation strategy for both 

ystem matrices. As an example, for F = F 2 , the CRLB is around

0 −4 when k = n = 7 for the equal power allocation strategy, and 

he same level of CRLB is attained when k = n = 14 for the optimal

ower allocation strategy. Hence, significant improvements can be 

chieved by the optimal power allocation strategy. 

.2. Results for shannon information criterion 

For this criterion, the problem in (22) (equivalently, (24) ) is 

onsidered, which leads to the solution in (25) . That is, the optimal 
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Fig. 3. Maximum eigenvalue of the CRLB (inverse FIM) versus k for the optimal and equal power allocation strategies. 

Fig. 4. The largest diagonal entry of the CRLB (worst-case coordinate CRLB) versus k for the optimal and equal power allocation strategies. 
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nd equal power allocation strategies yield the same solution in 

his case. The Shannon information achieved by the optimal (equal) 

ower allocation strategy is plotted versus k in Fig. 2 . It is observed

hat the Shannon information increases as the dimension of the 

arameter vector, k , increases. The increase in Shannon informa- 

ion is linear for both system matrices, and the achieved Shannon 

nformation scores are nearly the same for F = F 1 and F = F 2 . 

.3. Results for worst-case error variance criterion 

In this case, the problem in (27) and the alternative problem in 

30) are solved. The solution of (27) is obtained via the multistart 

lobal optimization algorithm in MATLAB. On the other hand, the 

qual power allocation strategy is the solution of (30) , as shown 

n Section 3.3 . In Fig. 3 , the maximum eigenvalues of the CRLBs
8 
chieved by the optimal and equal power allocation strategies are 

lotted versus k . It can be seen in Fig. 3 that the optimal power al-

ocation strategy can significantly outperform the equal power al- 

ocation strategy, and the difference between the two power allo- 

ation strategies increases as the number of parameters increases. 

ne implication of this result is that power adaptation can get 

ore effective when there exist more parameters to estimate. In 

ddition, it is noted that maximizing the lower bound on the 

igenvalues of the CRLB is not sufficient to obtain the optimal 

ower allocation strategy, as stated in Remark 1. 

.4. Results for worst-case coordinate error variance criterion 

For this criterion, the problem in (32) is considered, which leads 

o the optimal solution in (36) . The largest diagonal entry of the 
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Fig. 5. Average Fisher information versus k for the optimal and equal power allocation strategies. 

Fig. 6. The minimum diagonal entry of the FIM (worst-case coordinate Fisher information) versus k for the optimal and equal power allocation strategies. 
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RLB is plotted versus k for both the optimal solution and the 

qual power allocation strategy in Fig. 4 . It is noted that the trend

s similar to that in Fig. 3 . Namely, the benefits of optimal power

daptation are observed for the worst-case coordinate error vari- 

nce criterion, as well. 

.5. Results for average Fisher information criterion 

In this case, we focus on the problem in (37) , the solution of

hich is provided by (42) in Proposition 1. The impact of the di- 

ension of the parameter vector, k , on the average Fisher informa- 

ion is shown in Fig. 5 for both the optimal solution in (42) and

he equal power allocation strategy. It is observed that the average 

isher information rapidly decreases with k when k ≤ 10 for both 
9 
he optimal and equal power allocation strategies. While the op- 

imal power allocation strategy is superior to the equal power al- 

ocation for all values of k , significant enhancements are observed 

or large values of k . 

.6. Results for worst case coordinate Fisher information 

In this scenario, the minimum diagonal entry of the FIM is 

aximized as in (43) , leading to the optimal power allocation 

trategy in (48) . The minimum diagonal entry of the FIM is 

lotted versus k for both the optimal and equal power alloca- 

ion strategies in Fig. 6 . When F = F 2 , the worst-case coordinate 

isher information rapidly decreases for small k , while the trend 

s more steady when F = F . The decrease in worst-case Fisher 
1 
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nformation slows down for large values of k . Overall, the im- 

act of power adaptation can be observed more clearly when k is 

arge. 

It is noted from the simulation results that when the di- 

ensions of the parameter and observation vectors are large, 

ower adaptation becomes more critical and the optimal power 

llocation strategies can provide more significant improvements 

ver the equal power allocation strategy. In addition, the trends 

how that power adaptation can mitigate the adverse effects of 

ncreases in the dimension of the parameter vector when the 

bservation vector has the same dimension as the parameter 

ector. 

. Conclusion 

The optimal power allocation problem has been investigated 

or vector parameter estimation in the absence of prior informa- 

ion according to various Fisher information based optimality cri- 

eria. After deriving the FIM for a linear observation model, six dif- 

erent optimal power allocation problems have been formulated. 

hen, some closed-form solutions have been provided based on 

ptimization theoretic approaches. It has been shown that the pro- 

osed power allocation strategies are also valid for nonlinear sys- 

em models under certain conditions and in the presence of nui- 

ance parameters. Numerical examples have shown that the use 

f the optimal power allocation strategies can provide significant 

mprovements in estimation performance over the equal power al- 

ocation strategy. 
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o ğa Gürgüno ğlu received the B.S. and M.S. degrees from Bilkent University, Turkey 
n 2019 and 2021, respectively. He was with the Communications and Information 

echnologies division at Aselsan Inc., Turkey between 2019 and 2021. He is currently 

orking towards his Ph.D. degree in electrical engineering at KTH Royal Institute of 
echnology, Sweden. His research interests are in the areas of wireless communica- 

ions, detection and estimation theory, and stochastic control. 

erkan Dulek received the B.S., M.S. and Ph.D. degrees in electrical and electron- 

cs engineering from Bilkent University. He was a postdoctoral research associate at 
he Department of Electrical Engineering and Computer Science, Syracuse Univer- 

ity, Syracuse, NY. He is now an associate professor at the Department of Electri- 

al and Electronics Engineering, Hacettepe University, Ankara, Turkey. His research 
nterests are in statistical signal processing, detection and estimation theory, and 

ommunication theory. 

http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0001
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0001
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0002
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0002
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0003
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0003
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0003
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0003
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0004
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0004
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0004
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0005
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0005
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0005
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0006
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0006
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0006
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0006
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0007
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0007
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0007
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0008
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0008
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0008
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0009
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0009
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0009
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0009
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0010
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0010
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0010
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0011
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0011
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0011
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0011
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0011
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0012
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0012
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0012
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0013
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0013
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0013
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0013
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0013
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0014
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0014
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0014
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0014
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0014
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0015
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0015
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0015
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0015
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0015
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0016
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0016
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0016
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0016
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0017
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0017
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0017
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0018
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0018
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0018
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0018
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0019
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0019
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0019
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0019
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0019
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0019
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0020
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0020
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0020
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0020
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0021
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0021
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0021
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0021
https://doi.org/10.1109/TAES.2017.2667999
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0023
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0023
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0023
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0023
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0023
https://doi.org/10.1109/TAES.2005.1541459
https://doi.org/10.1109/7.395217
https://doi.org/10.1088/0957-0233/9/6/003
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0027
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0027
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0027
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0028
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0028
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0029
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0029
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0030
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0030
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0030
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0031
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0031
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0031
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0032
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0032
https://doi.org/10.2307/2965448
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0034
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0034
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0034
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0034
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0035
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0035
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0035
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0036
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0036
http://refhub.elsevier.com/S0165-1684(21)00427-8/sbref0036


D. Gürgüno ̆glu, B. Dulek and S. Gezici Signal Processing 192 (2022) 108390 

S
t

2
M

E
r

c
a

R
G

I
N

inan Gezici received the B.S. degree from Bilkent University, Turkey in 2001, and 
he Ph.D. degree in Electrical Engineering from Princeton University in 2006. From 

0 06 to 20 07, he worked at Mitsubishi Electric Research Laboratories, Cambridge, 
A. Since 2007, he has been with the Department of Electrical and Electronics 

ngineering at Bilkent University, where he is currently a Professor. Dr. Gezici’s 
esearch interests are in the areas of detection and estimation theory, wireless 
11 
ommunications, and localization systems. Among his publications in these 
reas is the book Ultra-wideband Positioning Systems: Theoretical Limits, 

anging Algorithms, and Protocols (Cambridge University Press, 2008). Dr. 
ezici was an associate editor for IEEE Transactions on Communications, 

EEE Wireless Communications Letters, and Journal of Communications and 
etworks. 


	Power adaptation for vector parameter estimation according to Fisher information based optimality criteria
	1 Introduction
	2 System model
	3 Optimal power allocation for vector parameter estimation
	3.1 Average mean squared error criterion
	3.2 Shannon information criterion
	3.3 Worst-case error variance criterion
	3.4 Worst-case coordinate error variance criterion
	3.5 Average Fisher information criterion
	3.6 Worst-case coordinate Fisher information criterion

	4 Extensions
	4.1 Presence of nuisance parameters
	4.2 Extension to nonlinear model

	5 Numerical results
	5.1 Results for average MSE criterion
	5.2 Results for shannon information criterion
	5.3 Results for worst-case error variance criterion
	5.4 Results for worst-case coordinate error variance criterion
	5.5 Results for average Fisher information criterion
	5.6 Results for worst case coordinate Fisher information

	6 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	References


