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Abstract—We introduce a novel deep reinforcement learning
(DRL) approach to jointly optimize transmit beamforming and
reconfigurable intelligent surface (RIS) phase shifts in a multiuser
multiple input single output (MU-MISO) system to maximize the
sum downlink rate under the phase-dependent reflection ampli-
tude model. Our approach addresses the challenge of imperfect
channel state information (CSI) and hardware impairments by
considering a practical RIS amplitude model. We compare the
performance of our approach against a vanilla DRL agent in two
scenarios: perfect CSI and phase-dependent RIS amplitudes, and
mismatched CSI and ideal RIS reflections. The results demon-
strate that the proposed framework significantly outperforms the
vanilla DRL agent under mismatch and approaches the golden
standard. Our contributions include modifications to the DRL
approach to address the joint design of transmit beamforming
and phase shifts and the phase-dependent amplitude model. To
the best of our knowledge, our method is the first DRL-based
approach for the phase-dependent reflection amplitude model
in RIS-aided MU-MISO systems. Our findings in this study
highlight the potential of our approach as a promising solu-
tion to overcome hardware impairments in RIS-aided wireless
communication systems.

Index Terms—reconfigurable intelligent surface, sum rate,
multiuser multiple input single output, hardware impairment,
phase-dependent amplitude, deep reinforcement learning

I. INTRODUCTION

RIS is among the emerging technologies explored for
next-generation wireless communication systems [1]. An RIS
consists of multiple reflecting elements with sub-wavelength
spacing whose impedances are adjusted to induce desired
phase shifts on incident waves before they are reflected.
This enables the manipulation of multipath interference at the
receiver [2]. However, depending on the RIS hardware, the
incident wave is attenuated depending on the applied phase
shifts to the individual elements, resulting in phase-dependent
reflection amplitudes [1]. Such phenomenon causes significant
performance losses [2].

The non-linear model in [1] renders the already complex
optimization-based approaches impractical [3]. An alternative
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to such methods, deep reinforcement learning (DRL), has
become a widely-studied machine learning (ML) approach
for RIS-aided wireless systems such as non-orthogonal mul-
tiple access (NOMA) downlink systems [4], millimeter wave
communications [5], vehicular communications and trajectory
optimization [6]–[8], and the transmit beamforming and phase
shifts design [6], [9]–[15]. In [4], RIS phase shifts are adjusted
using the Deep Deterministic Policy Gradient (DDPG) algo-
rithm [16]. In [5], the joint design of the downlink beamform-
ing matrix and the RIS phase shifts are considered under ideal
RIS reflections. In [15], the aforementioned optimization is
performed under individual users’ signal-to-interference-plus-
noise ratio (SINR) constraints, as opposed to maximizing the
downlink sum rate, which is susceptible to maximizing the
sum rate by significantly lowering certain users’ individual
rates. In [17], a Deeq Q-Network (DQN)-based framework
is proposed to maximize the spectral efficiency (SE) of the
downlink of an orthogonal frequency division multiplexing
(OFDM) communication system with a low-resolution RIS.
While the prior applications of DRL to RIS-aided systems
assumed ideal reflections and perfect CSI, a DRL application
considering RIS hardware impairments does not exist to the
best of our knowledge.

In this paper, we study the joint design of transmit beam-
forming and phase shifts for RIS-aided multi-user multiple
input single output (MU-MISO) systems through a DRL
approach. Our objective is to maximize the sum downlink rate
of the users under the phase-dependent amplitude model. Since
phase-dependent amplitudes make the system more complex,
we only consider DRL-based approaches in our study. The
main contributions of this study can be summarized as follows:

• We present novel modifications for the application of
DRL to RIS-aided systems, which address two critical
aspects of non-episodic tasks, e.g., the joint design of
transmit beamforming and phase shifts, which have been
passed over the existing works.

• To the best of our knowledge, we devise the first DRL-
based approach for the phase-dependent reflection ampli-
tude model in RIS-aided MU-MISO systems to provide



an alternative ML-based framework for the suboptimal
iterative algorithms proposed in [1].

• Although the agent is unaware of the phase-dependent
reflections and the presence of channel estimation error,
the presented method achieves sum rates close to the
existing DRL agent operating with perfect CSI and full
awareness of phase-dependent RIS amplitudes.

• To ensure reproducibility and support further research on
DRL-based RIS systems, we provide our source code and
results in the GitHub repository1.

II. SYSTEM MODEL

We consider the downlink of a narrow-band RIS-aided
MU-MISO system consisting of K single-antenna users, M
base station (BS) antennas, and L RIS elements. The transmit
beamforming matrix G ∈ CM×K maps K data streams
denoted by x ∈ CK×1 for K users onto M transmit an-
tennas. H ∈ CL×M , Φ ≜ diag(ϕ1, . . . , ϕL) ∈ CL×L, and
hk ∈ CL×1 denote the base station (BS)-RIS channel, the
diagonal reflection matrix at the RIS, and RIS-user k channel
respectively. In the following subsections, we explain two
different environment models: true environment with phase-
dependent RIS amplitude and perfect CSI, and the mismatch
environment with ideal reflection assumption and imperfect
CSI.

A. True Environment Model

The received signal at user k can be expressed as:

zk = h⊤
k ΦHGx+ wk, (1)

where the complex scalars zk and wk denote the received
signal and the additive receiver noise at the k’th user, re-
spectively, and we assume that wk ∼ CN (0, σ2

w) for all k.
The RIS follows the phase-dependent amplitude model in [1],
with entries ϕl = β(φl)e

jφl for φ ∈ [0, 2π), resulting in:

β(φl) = (1− βmin)

(
sin(φl − µ) + 1

2

)κ
+ βmin, (2)

where βmin ∈ [0, 1], µ ≥ 0, and κ ≥ 0 are constants
that depend on the hardware implementation of the RIS. In
the golden standard scenario, the BS knows the individual
cascaded channels to each user, denoted by:

Dk ≜ diag(hk)H ∈ CL×M , ∀k = 1, . . . ,K. (3)

Hence (1) can be rewritten as:

zk = ϕ⊤DkGx+ wk, (4)

where ϕ ∈ CL×1 denotes the column vector consisting of the
diagonal entries of Φ.

1https://github.com/baturaysaglam/RIS-MISO-PDA-Deep-
Reinforcement-Learning

B. Mismatch Environment Model

In this simplified model, the RIS reflections are assumed
to be lossless, i.e., ϕ̂ ≜ [ejφ1 , . . . , ejφL ]⊤. Moreover, the
agent has access to only an imperfect estimate of the cascaded
channels, namely:

D̂k ≜ Dk +Ek, ∀k = 1 . . . ,K, (5)

where Ek ∈ CL×M denotes the channel estimation error
matrix of the cascaded channel of each user, with independent
and identically distributed (i.i.d.) entries e(k)l,m ∼ CN (0, σ2

e).

C. Problem Formulation

1) The Golden Standard Objective: Our emphasis is to
utilize the DRL agent to maximize the sum downlink rate
in the system, which is denoted as:

RΣ ≜
K∑
k=1

log

(
1 +

∥ϕ⊤DkG∥2∑
j ̸=k ∥ϕ

⊤DjG∥2 + σ2
w

)
. (6)

The BS aims to maximize (6) by adjusting G and ϕ. Under the
transmission power constraint Pt and the domain restriction of
phase shifts, the optimization problem is expressed as:

maximize
ϕ,G

RΣ

subject to φl ∈ [0, 2π), ∀ l = 1, . . . , L,

tr(GGH) ≤ Pt. (7)

where ϕ depends on φ1, . . . , φL and β(φl) according to (2)
when the BS agent is aware of the true environment model.

2) The Mismatch Objective: The optimization problem to
be solved in the mismatch scenario is defined as:

R̂Σ ≜
K∑
k=1

log

1 +
∥ϕ̂

⊤
D̂kG∥2∑

j ̸=k ∥ϕ̂
⊤
D̂jG∥2 + σ2

w

 . (8)

Consequently, the BS agent considers the following optimiza-
tion problem:

maximize
ϕ̂,G

R̂Σ

subject to φl ∈ [0, 2π), ∀ l = 1, . . . , L,

tr(GGH) ≤ Pt. (9)

The objective in (8) uses ideal RIS amplitudes and noisy
channel estimates instead of the phase-dependent amplitude
and the true channel in (6). Hence, they have different forms
in terms of the transmit beamformer and the RIS phase
shifts. Consequently, the seemingly similar (7) and (9) have
different solutions. In other words, the BS is trying to solve a
different optimization problem than the actual sum rate in the
environment, resulting in inferior transmit beamforming and
RIS configuration designs. In Section III, we propose a DRL
framework that overcomes this phenomenon. Section III.
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III. THE DEEP REINFORCEMENT LEARNING FRAMEWORK

A. Overview

At each discrete time step t, the agent observes a state s ∈ S
and takes an action a ∈ A, and observes a next state s′ ∈ S
and receives a reward r, where S and A are the state and
action spaces, respectively. In fully observable environments,
the reinforcement learning (RL) problem is usually represented
by a Markov decision process, a tuple (S,A, P, γ), where P is
the transition dynamics such that s′, r ∼ P (s, a) and γ ∈ [0, 1]
is a constant discount factor.

The objective in RL is to find an optimal policy π that
maximizes the value defined by Vt =

∑∞
i=0 γ

irt+i+1, where
the discount factor γ prioritizes the short-term rewards. The
policy of an agent is regarded as stochastic if it maps states to
action probabilities π : S → p(A), or deterministic if it maps
states to unique actions π : S → A. The performance of a
policy is assessed under the action-value function (Q-function
or critic) that represents Vt while following the policy π after
acting a in state s: Qπ(s, a) = Eπ[

∑∞
t=0 γ

trt+1|s0 = s, a0 =
a]. The Q-function is learned through the Bellman equation
[18]:

Qπ(s, a) = Er,s′∼P,a′∼π[r + γQπ(s′, a′)], (10)

where a′ is the action selected by the policy on the observed
next state s′.

In deep RL, the critic is approximated by a deep neural
network Qθ with parameters θ, i.e., the Deep Q-learning algo-
rithm [19]. Given a transition tuple (s, a, r, s′), the Q-network
is trained by minimizing a loss J(θ) on the temporal-difference
(TD) error δ corresponding to Qθ [20], the difference between
the output of Qθ and learning target y:

y ≜ r + γQθ′(s
′, a′), (11)

δ ≜ y −Qθ(s, a); (12)
θ ← θ − η∇θJ(θ), (13)

where J(θ) = |δ|2, ∇θJ(θ) is the gradient of the loss J(θ)
with respect to θ, and η is the learning rate. The target y in
(11) utilizes a separate target network with parameters θ′ that
maintains stability and fixed objective in learning the optimal
Q-function [19]. The target parameters are updated to copy
the parameters θ after a number of learning steps.

B. The Soft Actor-Critic Algorithm

We use the state-of-the-art Soft Actor-Critic (SAC) algo-
rithm [21] in our work, outperforming prior suboptimal DRL
algorithms [4], [9], [10], [13] in most DRL benchmarks.
SAC is an actor-critic, off-policy algorithm that operates in
continuous action spaces. It uses a separate actor network
to choose actions and stores experiences in the experience
replay memory [22]. Unlike on-policy algorithms, SAC sam-
ples transitions from the replay memory for training. Our
initial simulations showed that SAC was the only actor-critic
algorithm that could converge for the problem of interest
despite intensive hyperparameter tuning.

A SAC agent maintains three networks: two Q-networks
and a single stochastic policy network (or actor network), each
being a multi-layer perceptron (MLP). Using two Q-networks
is to reduce the overestimation of Q-value estimates [23]. The
Q-networks take the states provided by the environment and
actions produced by the actor network as inputs and produce
Q-value estimates, which are scalar values. Given the actor
network πψ parameterized by ψ, the Q-networks are jointly
trained in the SAC algorithm as:

ŷ ≜ r+ γmin
i=1,2

Qθ′i(s
′,a′)|a′∼πψ(·|s′) − α log(a′|s′), (14)

J(θi) =
1

N
∥ŷ −Qθi(s,a)∥22, (15)

θi ← θi − η∇θiJ(θi), (16)

where (s,a, r, s′)Ni=1 is the mini-batch of transitions sampled
from the experience replay buffer and N is the mini-batch size,
θi are the parameters corresponding to the ith Q-network, α is
the entropy regularization term, and ∥·∥2 is the L2 norm. Note
that we denote state and action vectors by s and a, respectively,
while s and a represent the batch of state and action vectors.

Similarly, the policy network takes state vectors from the
environment as inputs and produces numerical action vectors.
The loss for the policy network in the SAC algorithm is
expressed by:

J(ψ) =
1

N

N∑
i

α log πψ(âi|si)− min
j=1,2

Qθj (si, âi)|â∼πψ(·|s).

(17)
Then, the policy gradient ∇ψJ(ψ) is computed by the stochas-
tic policy gradient algorithm [21] and used to update the
parameters through gradient ascent:

ψ ← ψ + η∇ψJ(ψ). (18)

Lastly, the entropy regularization term α controls exploration,
with higher values corresponding to more exploration. While
a DRL algorithm with a deterministic policy can be used, it
requires additive noise for exploration. In contrast, entropy
regularization in SAC considers the current policy’s knowl-
edge, making it a more effective solution for the challenging
transmit beamforming and phase shift design.

C. Construction of the Environment

RL distinguishes environments into episodic and non-
episodic tasks. An episode ends when a terminal condition
is met. In contrast, non-episodic (continuing) tasks have no
specific endpoint. In our case, the task is considered continu-
ing because the BS continuously performs beamforming and
configures RIS elements. Terminal conditions can be set, as
in [9], but they might introduce bias and mislead the learning
agents [24]. Therefore, we adopt a continuing task framework
in developing our approach.

1) Action: The policy network outputs the flattened con-
catenation of G and ϕ as the action vector. However, neural
networks cannot process complex numbers. Therefore, the
actor network produces the real and imaginary parts separately



and constructs G and ϕ. To satisfy the transmit power and
phase domain constraints, i.e., (7) and (9), the agent nor-
malizes the output of actions. Consequently, an action vector
consists of 2MK + 2L elements.

2) State: The state vector consists of transmission and
reception powers for each user, the previous action, and the
cascaded channel matrices Dk or their estimates (D̂k) for
k = 1, . . . ,K, depending on whether the BS has perfect or
imperfect CSI. Similarly, these matrices are flattened and the
number of elements is doubled due to the real and imaginary
parts except for powers. We consider the transmission powers
allocated to each data stream at the BS and the reception
power at each user. Consequently, we obtain 2K power-related
entries. 2KLM entries come from the cascaded channel esti-
mates for each user, and 2MK+2L entries come from the pre-
vious action vector, resulting in a 2KLM+2MK+2L+2K-
dimensional state vector. Furthermore, the correlation between
state dimensions degrades the performance of learning RL
agents [24]. Hence, we whiten state vectors after each en-
vironment step. Finally, the initial state of the training still
requires the action in the previous step. Thus, we initialize G
as an identity matrix and ϕ as a vector of ones to constitute
the initial environment state.

3) Reward: At every time step, the reward is determined
by the sum downlink rate expressed by either (6) or (8),
depending on the considered objective function.

IV. METHODOLOGY

A. Adapting the Deep Reinforcement Learning Framework to
Non-Episodic Tasks

While γ < 1 prioritizes short-term rewards, the agent must
be equally concerned with instantaneous and future rewards
since the reward (sum rate) should always be kept maximum
[24]. Therefore, we set γ = 1. Moreover, agents must carefully
remember the outcomes of past actions to compute future
actions, which cannot be achieved by learning only from
instant rewards [24]. To solve this, the DRL framework should
be adapted to non-episodic tasks by considering the average
reward concept. Therefore, the reward in the current step used
to train the agent is modified as follows:

r̃ ≜ r − r̄, (19)

where r is the instantaneous reward computed by the en-
vironment in the current state and r̄ is the average of the
rewards collected till the current state. Recall that the definition
of r + Qθ′(s, a) (the estimate of the value Qθ(s, a) when
γ = 1) corresponds to the rewards that the agent will collect
till the terminal state. However, there is no terminal state in
continuing tasks. Hence, the sum of collected rewards could go
to infinity. The average reward overcomes this by restraining
the estimation value. Hence, the agent should learn only from
r̃ instead of r or r̄.

B. Maximizing the True Sum Rate Under the Mismatch Envi-
ronment Model

To maximize (6) while learning from (8), we leverage a
recent work proposed for the exploration of continuous action

spaces, the Deep Directed Intrinsically Motivated Exploration
(DISCOVER) algorithm [25]. Motivated by the animal psy-
chological systems, DISCOVER utilizes a separate explorer
network ξω with parameters ω that represents a deterministic
exploration policy. Its objective is to perturb the actions
selected by the policy so that the prediction error by the
Q-network is constantly maximized. Consequently, this leads
agents to state-action spaces where Q-value prediction is
difficult, allowing them to correct the prediction error of
unknown or less selected actions.

However, we do not directly use the DISCOVER algorithm
since SAC already explores the action space by utilizing a
stochastic policy with the entropy parameter, i.e., the term α
in (14) and (17). Instead, we slightly modify the DISCOVER
algorithm such that the explorer network predicts β(φl) for
l = 1, . . . , L on the observed states:

ξω(s) =
[
1 . . . 1︸ ︷︷ ︸

2MK

β̂1 β̂1 β̂2 . . . β̂L β̂L︸ ︷︷ ︸
2L

]⊤
, (20)

where β̂l ∈ [βmin, 1]. The number of ones in the latter equation
is the number of elements included by G to the action vector.
This is feasible since the transmit beamforming produced by
the agent does not affect the RIS reflection loss in the phase-
dependent amplitude model. In addition, there are two entries
for each β̂l to scale both the real and imaginary parts of ϕ̂.
Thus, the prediction of ξω(s) is used to perturb only the phase
part of the actions:

aβ̂ ≜ a⊙ λ · ξω(s) =⇒ ϕ̂β̂ ≜
[
β̂1e

jφ1 . . . β̂Le
jφL
]⊤
, (21)

where ⊙ is the Hadamard product, and the hyperparameter λ ∈
(0, 1] restricts the explorer network not to perturb the actions
chosen by the actor detrimentally, similar to DISCOVER. The
environment takes aβ̂ from the agent and computes the next
state and reward with respect to aβ̂ . Therefore, the perturbed
actions are sampled from the experience replay buffer instead
of the raw ones produced by the policy network. Accordingly,
the losses for the Q- and actor networks are modified as
follows:

ŷβ̂ ≜ r̃+ min
i=1,2

Qθ′i(s
′,a′ ⊙ λ · ξω′(s))− α log(a′|s′); (22)

Jβ̂(θi) ≜
1

N
∥ŷβ̂ −Qθi(s,aβ̂)∥

2
2, (23)

Jβ̂(ψ) ≜
1

N

N∑
i

α log πψ(âi|si)− min
j=1,2

Qθj (si, âβ̂,i)|â∼πψ(·|s),

(24)

where âβ̂,i = â⊙λ · ξω . Notice that a target explorer network
also perturbs the next action a′, as in DISCOVER. Also,
we use γ = 1 and average reward in (22). The explorer
network is optimized such that the sum of absolute TD errors
is maximized:

δ̃β̂i(s,a⊙ λ · ξω(s)) ≜
1

N
∥ŷβ̂ −Qθi(s,a⊙ λ · ξω(s))∥

2
2,

(25)

J(ω) = δ̃β̂1
(s,a⊙ λ · ξω(s)) + δ̃β̂2

(s,a⊙ λ · ξω(s)). (26)



The deterministic exploration network is then updated through
the Deterministic Policy Gradient algorithm [26]:

∇ωJ(ω) =
2∑
i=1

E[∇ζ δ̃β̂i(s,a⊙ ζ)|ζ=λ·ξω(s)∇ωξω(s)], (27)

ω ← ω + η∇ωJ(ω). (28)

This forms our framework to solve the downlink RIS-
aided MU-MISO system under the phase-dependent amplitude
model. Overall, the explorer network predicts β(φl) and scales
the actions selected by the policy using β̂l. Then, the scaled
action is fed to the environment. Notice that the reward (sum
rate) computed by the environment is altered with respect to
the scaled actions aβ̂ (or ϕ̂β̂):

R̂Σ,β̂ ≜
K∑
k=1

log

1 +
∥ϕ̂

⊤
β̂ D̂kG∥2∑

j ̸=k ∥ϕ̂
⊤
β̂ D̂jG∥2 + σ2

w

 . (29)

Hence, the agent observes the effect of the explorer network’s
β(φl) prediction through the reward it receives, which is
equivalent to implicitly learning the true environment model.
By maximizing the TD error, the exploration policy further
forces the Q-networks to learn from its prediction mistakes
since now β̂-altered actions aβ̂ and rewards R̂Σ,β̂ are included
in the loss of Q-networks, i.e., (23). Ultimately, the exploration
policy learns the true environment model by considering the
current knowledge of the Q-networks and policy [25]. We refer
to the resulting algorithm as β-Space Exploration and provide
the pseudocode in our repository1.

Complexity Analysis: DISCOVER adds another neural
network to the training process, slightly increasing computa-
tional complexity by less than 33% compared to SAC’s three
networks (policy and two critics). The introduced complexity
can never be 33% since the input dimensions of the explorer
and actor networks, i.e., only the state dimension, is always
less than the input dimension of the critic network, i.e., the
aggregated state and action dimensions.

V. RESULTS

A. Simulation Setup

To test the effectiveness of β-Space Exploration, we com-
pare it against two vanilla SAC agents corresponding to
two scenarios: golden standard and mismatch. In the golden
standard scenario, the agent knows the true environment model
and is trained using the rewards computed according to (6).
Moreover, the agent has perfect CSI. In the mismatch case,
however, the BS tries to solve (9), learns from the rewards
computed according to (8), and has imperfect CSI. While the
vanilla SAC agent is tested under both scenarios, the SAC
agent combined with β-Space Exploration is tested under the
mismatch scenario.

Our simulations follow the well-known DRL benchmarking
standards [29], that is, each experiment runs over ten random
seeds for a fair comparison with the baselines. Furthermore,
the implementation of the SAC algorithm follows the structure

outlined in the original paper [21]. We performed an exten-
sive hyperparameter tuning starting from the hyperparameter
setting provided by [21]. The tuned hyperparameter setting
is outlined in Table I along with the chosen environment
parameter values. We also linearly decay the exploration
regularization term λ such that it becomes zero at the end
of the training. Highly perturbed actions (i.e., large λ values)
in the final steps may degrade the performance of a SAC
agent that learned to control the environment sufficiently well.
Precise experimental setup and implementation can be found
in the code of our repository1.

B. Discussion

In Fig. 1, we report the instantaneous sum rates computed
according to (6), averaged over ten random seeds. While the
agents are trained using the average reward r̃ in (19), the
performance is assessed under the instantaneous rewards r.
Also, Table II reports the converged sum rates, being the
average of the last 1000 instant rewards over ten trials, per
the DRL benchmarking standards [29].

From the evaluation results, we infer that
β-Space Exploration attains near-optimal results in all
of the settings tested. Specifically, when βmin = 0.3, the SAC
agent under the mismatch environment shows considerably
worse performance than the golden standard. The resulting

TABLE I: The hyperparameter setting used to produce the
reported results. No tuning was performed on the environment
parameters.

Hyperparameter Value

# of hidden layers† 2
# of units in each hidden layer† 256
Hidden layers activation† ReLU
Final layer activation (Q-networks) Linear
Final layer activation (actor, explorer) tanh
Learning rate η† 10−3

Weight decay† None
Weight initialization† Xavier uniform [27]
Bias initialization† constant
Optimizer† Adam [28]
Total time steps per training 20000
Experience replay buffer size 20000
Experience replay sampling method uniform
Mini-batch size 16
Discount term γ 1
Learning rate for target networks τ† 10−3

Network update interval† after each environment step
Initial α 0.2
Entropy target -action dimension
SAC log standard deviation clipping (−20, 2)
SAC ϵ 10−6

Initial β-Space Exploration λ 0.3

µ‡ 0
κ‡ 1.5
Channel noise variance σ2

e
‡ 10−2

AWGN channel variance σ2
w

‡ 10−2

Channel matrix initialization (Rayleigh)‡ CN (0, 1)

† Applies to all neural networks
‡ Environment hyperparameter



SAC (golden standard) SAC (mismatch) SAC + β-Space Exploration (mismatch)

(a) βmin = 0.3, Pt = 30 dBm,
K = 4, M = 4, L = 16

(b) βmin = 0.6, Pt = 30 dBm,
K = 4, M = 4, L = 16

(c) βmin = 0.6, Pt = 30 dBm,
K = 4, M = 4, L = 64

(d) βmin = 0.6,
Pt = {5, 10, 15, 20, 25, 30} dBm,

K = 4, M = 4, L = 16

Fig. 1: Learning curves for the tested settings. Shaded regions represent 95% confidence intervals over 10 random seeds for
each result. A sliding window of size 25 smooths the curves for visual clarity.

performance approaches the golden standard when βmin

is increased to 0.6. This is expected since the interval for
possible RIS loss factors shrinks as β(φl) ∈ [βmin, 1].
However, our method is not affected by the βmin value.
For each value of βmin, it exhibits a robust performance,
achieving high sum downlink rates slightly lower than the
golden standard. Furthermore, β-Space Exploration regards
no issues with the convergence rate, that is, learning curves
are practically parallel to the golden standard. This implies
that the exploration policy can implicitly learn how its action
selections affect the loss in the RIS reflections, which is done
in a negligible amount of time compared to the total training
duration.

When the number of RIS elements L is increased to 64, the
sum rate achieved by the golden standard increases slightly
due to additional degrees of freedom to control the propagation
environment. On the other hand, the vanilla SAC agent cannot
benefit from this due to the increased number of misspecified
RIS amplitudes. In contrast, our proposed method converges
to the sum rates achieved by the golden standard with a slight
delay, despite being trained according to (8). As shown in
Table II, 99% of the sum rate loss caused by the mismatch

is compensated by β-Space Exploration when L = 64.
We also observe that β-Space Exploration offers consistent
performance gains over the vanilla SAC agent under mismatch
for different transmit power levels. Additionally, the resulting
confidence intervals of our algorithm are usually tighter than
the ones corresponding to the golden standard. This suggests
that our framework improves credibly over the baseline due to
the structure of the introduced method rather than unintended
consequences or any exhaustive hyperparameter tuning.

Lastly, the computational cost of the Q- and actor networks
of the SAC algorithm in the considered environment depend
on the values of the environment setting parameters M , K, and
L. Increasing these parameters increases the number of state
and action dimensions, which in turn increases the number of
parameters and operations involved in the forward pass of the
networks, leading to a higher computational cost. Therefore,
the values of M , K, and L should be chosen carefully to
balance the performance of the selected DRL algorithm with
its computational efficiency.

TABLE II: Average of last 1000 instant rewards achieved by the SAC agents, computed according to (6), over 10 trials of
20000 time steps. ± captures a 95% confidence interval over the trials. The performance increase denotes the percentage of
mean sum rate improvement obtained by β-Space Exploration over the vanilla SAC agent in the mismatch environment with
respect to the difference between the golden standard and mismatch scenarios.

Setting Golden Standard Mismatch β-Space Exploration Performance Increase

βmin = 0.3, Pt = 30 dBm, K = 4, M = 4, L = 16 8.16 ± 1.24 6.36 ± 0.67 7.88 ± 0.69 84%
βmin = 0.6, Pt = 30 dBm, K = 4, M = 4, L = 16 8.18 ± 0.77 7.43 ± 0.78 7.91 ± 0.43 64%
βmin = 0.6, Pt = 30 dBm, K = 4, M = 4, L = 64 8.71 ± 0.84 7.00 ± 0.57 8.70 ± 0.94 99%

Pt = 5 dBm, βmin = 0.6, K = 4, M = 4, L = 16 4.50 ± 0.45 4.11 ± 0.29 4.35 ± 0.36 62%
Pt = 10 dBm, βmin = 0.6, K = 4, M = 4, L = 16 5.99 ± 0.41 5.28 ± 0.42 5.70 ± 0.39 59%
Pt = 15 dBm, βmin = 0.6, K = 4, M = 4, L = 16 7.34 ± 0.83 6.49 ± 0.61 7.11 ± 0.54 73%
Pt = 20 dBm, βmin = 0.6, K = 4, M = 4, L = 16 7.77 ± 0.60 6.85 ± 0.77 7.45 ± 0.50 65%
Pt = 25 dBm, βmin = 0.6, K = 4, M = 4, L = 16 8.08 ± 0.83 7.13 ± 0.71 7.86 ± 0.57 77%
Pt = 30 dBm, βmin = 0.6, K = 4, M = 4, L = 16 8.18 ± 0.77 7.43 ± 0.78 7.91 ± 0.43 64%



VI. CONCLUDING REMARKS

In this paper, we present a novel DRL-based approach,
β-Space Exploration, to address the three critical aspects of
non-episodic tasks, imperfect CSI, and hardware impairments
in RIS-aided MU-MISO systems represented by the phase-
dependent reflection amplitude model [1]. Our method jointly
designs transmit beamforming and phase shifts to maximize
the sum downlink rate of the users. The empirical studies show
that β-Space Exploration attains near-optimal results, is robust
to various settings, and compensates for the sum rate loss
caused by hardware impairments in the RIS. Consequently,
our findings highlight the potential of our approach as a
promising solution to overcome hardware impairments in RIS-
aided wireless communication systems. In addition, while the
current work considers slow-fading channels, channel aging
models can easily be added to our environment code although
there exist many opportunities to improve the DRL agent
design with channel aging in mind.
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