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Abstract—In this letter, we address parametric channel es-
timation in a multi-user multiple-input multiple-output system
within the radiative near-field of the base station array with
aperture antennas. We investigate a two-dimensional multiple
signal classification algorithm (2D-MUSIC) to estimate both the
range and the azimuth angles of arrival for the users’ channels,
utilizing parametric radiative near-field channel models. We an-
alyze the performance of the algorithm by deriving the Cramér-
Rao bound (CRB) for parametric estimation, and its effectiveness
is compared against the least squares estimator, which is a
non-parametric estimator. Numerical results indicate that the
2D-MUSIC algorithm outperforms the least squares estimator.
Furthermore, the results demonstrate that the performance of
2D-MUSIC achieves the parametric channel estimation CRB,
which shows that the algorithm is asymptotically consistent.

Index Terms—Radiative near-field, aperture antennas, MUSIC,
channel estimation, Cramér-Rao lower bound.

I. INTRODUCTION

The success of massive multiple-input multiple-output
(M-MIMO) implementation in 5G systems, across both sub-6
GHz and mmWave bands, suggests that the next generation
of wireless systems will likely exploit even larger arrays,
referred to as the extremely large aperture array (ELAA) [1]–
[3]. Moreover, there is an ongoing trend toward employing
higher frequencies, implying a smaller wavelength in wireless
systems [4], [5]. As the array size increases and the wavelength
shrinks, the Fraunhofer array distance, the boundary between
radiative near- and far-fields, becomes large. Consequently,
a user equipment (UE) is likely to fall into the radiative
near-field region of the ELAA [6], [7]. In the radiative near-
field, the spherical curvature of the wavefront is noticeable;
therefore, there are spherical phase variations between the
antenna elements in the ELAA. The phase variations must
be characterized by both the angle and distance between
the ELAA and the transmitter. This renders far-field channel
models inaccurate as the far-field array response does not
capture information about the propagation distance.

To address this issue, polar-domain representation for the
extremely large-scale MIMO (XL-MIMO) channel has been
proposed in [8], [9]. Reference [8] focuses on the recovery
of the angular and distance information in the near-field

This study is supported by EU Horizon 2020 MSCA-ITN-
METAWIRELESS, Grant Agreement 956256. This paper was supported by
the Grant 2019-05068 from the Swedish Research Council. G. Fodor was
supported by the 6G-MUSICAL EU project, ID: 101139176.

channel utilizing the sparsity in the polar domain, while [9]
utilizes the distance domain in addition to the angular domain
to multiplex UEs in line-of-sight (LOS) scenarios. With the
polar-domain representation, one can sample both the angular
and the distance domains to obtain a near-field codebook.
Moreover, the polar-domain representation is used to ensure
a sparse representation of the near-field channel, enabling
the utilization of compressive sensing methods and classical
algorithms [8].

As recent papers [10]–[13] indicate, in short-range MIMO
communication scenarios, the LOS propagation channel is
dominating, and LoS models serve as a good approximation
of the real propagation conditions for deriving bounds for
channel estimation algorithms. When the channel is pure-
LOS, another way to estimate the near-field channel is to
first estimate the parameters of the UEs’ locations, given
that the channel has a simple and known parametrization.
Subsequently, the parameters are substituted into the channel
parametric model to yield the channel estimate. The state-of-
the-art [7] focuses on developing a low-complexity algorithm
to estimate the parameters of the UE’ locations by performing
subsequential parameter estimations neglecting the correlation
between the parameters. However, this introduces notable
performance degradation. Furthermore, no theoretical bound
is derived to benchmark the performance of the estimator.

In this letter, we explore the possibility of estimating the
UEs’ locations in polar coordinates based on the 2D near-
field channel model, where the channel is assumed to be
pure-LOS, as in [10], [11]. Then, we use the parameter
estimates to infer the channel coefficients. More importantly,
we derive the Cramér-Rao bound (CRB) on the parametric
channel estimation mean squared error (MSE) to evaluate the
performance of the 2D-multiple signal classification (MUSIC)
estimator. The CRB provides a lower bound on the variance
of any unbiased estimator [14], and depends heavily on
the relationship between the observation and the parameter.
Therefore, it is useful in evaluating parametric estimators. In
[15], the CRB on parametric channel estimation is derived
with a far-field model for a system using two reconfigurable
intelligent surfaces by considering the non-parametric CRB
as a transitional step towards a parametric channel estimation
CRB. To the best of the authors’ knowledge, however, such
an analysis has not been used to evaluate the performance



of parametric channel estimators. In this letter, we explore
the opportunities of parametric channel estimation in near-
field channels with aperture antennas by performing the afore-
mentioned analysis. In addition to the CRB analysis, we also
compare the performance of the 2D-MUSIC algorithm with
a non-parametric estimator, namely, the least squares (LS)
estimator to observe the performance gain from parametric
channel estimation.
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Fig. 1: An illustration of the system setup (not to scale). The radius
of the region highlighted with red color is twice the aperture length
of the antenna, within which we assume that no UEs are present, and
we assume that all K users are within the radiative near field of the
array.

II. SYSTEM MODEL

We consider a base station (BS) equipped with a uniform
linear array (ULA) consisting of N aperture antennas, serving
K single-antenna UEs.1 The location of UE k is denoted as
(xk, 0, zk), which is assumed to be in the radiative near-field
region (Fresnel region) of the BS array, for k ∈ {1, . . . ,K}.
Without loss of generality, we let the BS be geometrically
arranged along the x-axis with half-wavelength spacing, and
the array is centered around (0, 0, 0). A geometric illustration
of the system setup is provided in Fig. 1.

Antenna element n is centered at (x̄n, 0, 0) with

x̄n =

(
n− N + 1

2

)
︸ ︷︷ ︸

δn

λ

2︸︷︷︸
∆

, (1)

where δn and ∆ are the index of antenna element n, for
n = 1, . . . , N , and spacing between two antenna elements,
respectively. The aperture antennas each have an area of ∆2

along the xy-plane.
The channel between antenna element n and UE k located

at the distance dk (from the origin) in the azimuth angle φk

with respect to the origin (measured from x-axis towards the
z-axis) is represented as

hk
n(dk, φk) =

√
βn,ke

−j 2πλ rkn , (2)

where rkn =
√

d2k + (δn∆)2 − 2dk∆δn cos(φk). The free-
space channel gain βn,k between antenna n (which has size

1Note that the model is extendable to a uniform planar array (UPA), as it
was shown in [7].

λ/2× λ/2) and UE k can be approximated as [6, Eqn. (69)],
[16]

βn,k=

∫ x̄n+λ/4

x̄n−λ/4

∫ λ/4

−λ/4

1

4π

zk((x− xk)
2 + z2k)

((x− xk)2 + y2 + z2k)
5/2

dxdy

≈ λ2

4

1

4π

zk((x̄n − xk)
2 + z2k)

((x̄n − xk)2 + 02 + z2k)
5/2

≈ λ2

16π

dk sin(φk)

d3k
=

λ2

16π

sin(φk)

d2k
= βk (3)

which gives a sine-shaped antenna pattern with a maximum
gain of π. The approximation holds when the propagation
distance is larger than twice the array aperture [6] so that
the spherical amplitude variations over the wavefront are
negligible but not the phase variations. Using (2) and (3), we
can model the near-field channel vector to UE k as

hk(dk, φk) =
√

βk

[
e−j 2πλ rk1 . . . e−j 2πλ rkN

]T

. (4)

At time instance l, the received signal can be written as

y[l] = Hs[l] +w[l], l = 1, . . . , L, (5)

where H = [h1(d1, φ1) . . . hK(dK , φK)], y[l] =
[y1[l] . . . yN [l]]T contains the received signals, s[l] =
[s1[l] . . . sK [l]]T represents the transmitted signals from K
UEs, and w[l] = [w1[l] . . . wN [l]]T is the additive noise
where each entry follows an independent complex Gaussian
distribution with zero mean and variance σ2.

III. NEAR-FIELD PARAMETRIC CHANNEL ESTIMATION
VIA 2D-MUSIC

In this section, our aim is to estimate the channels
hk(dk, φk) for k = 1, . . . ,K based on (5). Combining L such
observations over time, we first aim to estimate the ranges dk
and azimuth angle of arrivals (AoAs) φk for k = 1, . . . ,K us-
ing the 2D-MUSIC algorithm. The channel response function,
defined in (2), allows us to characterize the UEs’ channels
by estimating the locations (dk, φk), k = 1, . . . ,K, from L
transmissions at distinct instants. This allows us to estimate
the channels of the K UEs based on the dk and φk by using
the parametric model in (4). In the following, we provide a
way to utilize 2D-MUSIC to estimate the UEs’ channels. We
assume that: 1) The UEs are not located in exactly the same
angular directions. 2) The transmitted signals are assumed to
follow a circular symmetric complex Gaussian distribution. 3)
The noise is independent of all the signals.

The MUSIC algorithm works by exploiting the structure of
the eigenvectors in the sample covariance matrix [17]:

R̂L =
1

L

L∑
l=1

y[l]yH[l]. (6)

Given the number of UEs K, we first construct the noise-
subspace matrix Ûn ∈ CN×(N−K) whose columns are the
eigenvectors of R̂L corresponding to the smallest (N − K)
eigenvalues. Then, the 2D MUSIC spectrum is generated as

S(d, φ) =
1

hH(d, φ)ÛnÛH
nh(d, φ)

, (7)



where each possible value of h(d, φ) is obtained by computing
the potential channel responses by plugging the grid points into
(4). K combinations of (d, φ) corresponding to the peaks in
the MUSIC spectrum are then identified, each representing a
UE’s location. The channel estimate Ĥ can then be obtained
by substituting the parameter estimates (dk, φk), k = 1, . . . ,K
into (2).

IV. CRB ON NEAR-FIELD PARAMETRIC CHANNEL
ESTIMATION

In parameter estimation problems, bounds on estimation
performance serve as the golden standard to evaluate the
performance of estimators. To this end, we derive the CRB
on the near-field parametric channel estimation in this section.
The CRB, the inverse of the Fisher Information Matrix (FIM),
provides a lower bound on the performance of any unbiased
estimator [14] via the following matrix inequality:

Cov
(
θ̂(X)

)
⪰ I−1(X;θ) (8)

for an estimate of a parameter vector θ based on an observation
vector X. Here, Cov(θ̂(X)) = E[(θ̂(X)− θ)(θ̂(X)− θ)H] is
the covariance matrix and, consequently, the bound on the sum
MSE can be expressed as

E
[∥∥∥θ̂(X)− θ

∥∥∥2] ≥ tr
(
I−1(X;θ)

)
. (9)

In a generic vector parameter estimation problem, the FIM is
computed via the following equation [18, Eq. 3.21]:

[I(X;θ)]i,j = −E
[
∂2 ln(f(X;θ))

∂θi∂θj

]
, (10)

where θi is the i-th element of θ. In our near-field parametric
channel estimation problem, the observation from a single
transmission is stated in (5). Before ensembling the obser-
vations from multiple transmissions, it is more convenient to
change the order of the transmitted signals and the unknown
channel in (5) as

y[l] =
[
s1[l]IN . . . sK [l]IN

]︸ ︷︷ ︸
≜S[l]∈CN×NK

 h1(d1, φ1)
...

hK(dK , φK)


︸ ︷︷ ︸
≜h̃(θ)∈CNK×1

+w[l],

(11)
where θ ≜ [d1 . . . dK φ1 . . . φK ]T ∈ R2K . While (11)
corresponds to the observation from a single transmission, we
can stack the observations from multiple transmissions l =
1, . . . , L vertically to obtain

ỹ = Sh̃(θ) + w̃ ∈ CLN×1, (12)

where ỹ ≜ [yT[1] . . . yT[L]]T ∈ CLN ,
S ≜ [ST[1] . . . ST[L]]T ∈ CLN×NK , and
w̃ ≜ [wT[1] . . . wT[L]]T ∈ CLN . To compute the
FIM, we first define a transition parameter v ≜ h̃(θ), for
which we can express the FIM as

I(ỹ;v) = SHΣ−1
w̃ S, (13)

where Σw̃ = E[w̃w̃H] ∈ CLN×LN is the noise covariance
matrix, which has the following relationship with the noise
covariance for a single transmission Σw = E[wwH] ∈ CN×N :

Σw̃ = IL ⊗Σw = σ2ILN . (14)

This relation holds since the noise is independent over both
time and antennas.

A. CRB for Vector Transformations

To incorporate the parametric nature of the channel into
the CRB analysis, we consider the parametric model h̃(·) :
R2K 7→ CNK as a vector transformation to utilize the
following identity [18, Eq. 3.30]:

I−1(ỹ;v) = JH

h̃
I−1(ỹ;θ)Jh̃, (15)

where Jh̃ ∈ C2K×NK is the Jacobian of the non-linear
transformation h̃ : R2K 7→ CNK with entries [Jh̃]i,j =

∂h̃j

∂θi
.

While (15) suffices to obtain the inverse FIM between the
observation and the location parameters, the non-parametric
FIM in (13) is not always invertible. Therefore, it is more
desirable to have an expression for I(ỹ;θ) in terms of I(ỹ;v).
To this end, we multiply (15) with the pseudoinverse of Jh̃

from both sides to obtain

I−1(ỹ;θ) = (Jh̃J
H

h̃
)−1Jh̃I

−1(ỹ;v)JH

h̃
(Jh̃J

H

h̃
)−1, (16)

which is the 2K × 2K inverse FIM between the received
signals and the UEs’ coordinates. Applying (15) again to get
the parametric channel estimation CRB, we obtain

I−1(ỹ; h̃(θ)) = JH

h̃
I−1(ỹ;θ)Jh̃,

= JH

h̃
(Jh̃J

H

h̃
)−1Jh̃I

−1(ỹ;v)JH

h̃
(Jh̃J

H

h̃
)−1Jh̃.

(17)

Note that both I−1(ỹ;v) and I−1(ỹ; h̃(θ)) denote the inverse
FIM for channel estimation. However, the latter contains
additional information from the channel structure. Also note
that JH

h̃
(Jh̃J

H

h̃
)−1Jh̃ ̸= INK , hence these two matrices are

different.

B. Jacobian of the Parametric Channel

To obtain the CRB on the MSE of any parametric estimator
for our setup, what remains is to derive the Jacobian of h̃(·) in
closed form2. Based on the definition of h̃ in (11), the Jacobian
can be obtained as Jh̃ = [JT

1 ,J
T
2 ]

T where J1,J2 ∈ CK×NK

are block diagonal matrices containing the partial derivatives
of the channel with respect to dk and φk, respectively. That is,
J1 = diag

(
∂hT

1

∂d1
, . . . ,

∂hT
K

∂dK

)
and J2 = diag

(
∂hT

1

∂φ1
, . . . ,

∂hT
K

∂φK

)
.

To derive ∂hk

∂dk
and ∂hk

∂φk
, we need to recall the near-field

2Note that by considering the parametric channel model for UPA in [7],
we can obtain the CRB for the 3D case as well.



channel model parametrized by UE location in Section II.
Starting from (4), we have

∂hk

∂dk
=

1

2
√
βk

∂βk

∂dk

[
e−j 2πλ rk1 . . . e−j 2πλ rkN

]T

+
√

βk

[
−j 2πλ

∂rk1
∂dk

e−j 2πλ rk1 . . . −j 2πλ
∂rkN
∂dk

e−j 2πλ rkN

]T

,

(18a)
∂hk

∂φk
=

1

2
√
βk

∂βk

∂φk

[
e−j 2πλ rk1 . . . e−j 2πλ rkN

]T

+
√

βk

[
−j 2πλ

∂rk1
∂φk

e−j 2πλ rk1 . . . −j 2πλ
∂rkN
∂φk

e−j 2πλ rkN

]T

,

(18b)

where ∂βk

∂dk
, ∂βk

∂φk
, ∂rkn

∂dk
, and ∂rkn

∂φk
can be expressed as

∂βk

∂dk
= −λ2

8π

sin(φk)

d3k
, (19a)

∂βk

∂φk
=

λ2

16π

cos(φk)

d2k
, (19b)

∂rkn
∂dk

=
dk −∆δn cos(φk)√

d2k + (δn∆)2 − 2dk∆δn cos(φk)
, (19c)

∂rkn
∂φk

=
dk∆δn sin(φk)√

d2k + (δn∆)2 − 2dk∆δn cos(φk)
. (19d)

As a result, we have Jh̃ and hence the CRB for parametric
channel estimation in closed form.

V. NUMERICAL RESULTS

In this section, we provide numerical examples to demon-
strate the performance of the 2D-MUSIC algorithm. As the
state-of-the art, we include a revised version of the proposed
algorithm in [7]. While it was proposed as a 2D-1D-MUSIC
algorithm, we implemented it as a 1D-1D-MUSIC algorithm in
our case due to the fewer number of dimensions. Our version
of this algorithm first estimates the azimuth angles and then
estimates the ranges based on the azimuth angle estimates.
In addition, we include a non-parametric channel estimator,
namely, the LS estimator. Note that one disadvantage of the
LS estimator is that it requires a known sequence of pilots
while the 2D-MUSIC method does not. For all estimators,
we use the CRB as the benchmark. Specifically, for the LS
estimator, we use the non-parametric CRB (inverse of (13))
and for the 2D-MUSIC and the 1D-1D MUSIC estimator,
we use the parametric CRB we derived in Section IV. In
addition, we examine the impact of the location of the UE on
the channel estimation performance by considering a two-UE
setup, assigning one of the UEs a fixed location, and changing
the location of the other UE. We provide the parameters used
to generate the numerical results in Table I.

TABLE I: List of parameters used to generate the numerical results.
Parameter Value

N 32
L 40
K 4 in Fig. 2, 2 in Fig. 3

SNR −10, 0, . . . , 60 dB
λ 10 cm

A. Performance of the 2D-MUSIC Algorithm

We first compare the estimation performance for the 2D-
MUSIC algorithm, the 1D-1D-MUSIC algorithm, and the LS
estimator. As shown in Table I, we consider the transmit
signal-to-noise ratio (SNR) (Pp/σ

2) to be within the range
of −10 dB and 60 dB. The UEs are dropped by selecting
uniformly spaced points over the angular domain between
60◦ and 120◦, and between twice the aperture size and
the Fraunhofer array distance to ensure radiating near-field
conditions. In Fig. 2, we provide the CRBs on the channel
estimation normalized mean squared error (NMSE) for para-
metric and non-parametric estimators in blue and black solid
lines, respectively3. Then, we provide the NMSEs achieved
by the 2D-MUSIC algorithm, the 1D-1D-MUSIC, and the LS
estimator with green, magenta, and red lines, respectively.

The parameter undergoes a known linear transformation
when considering the system model non-parametrically. Then,
it is corrupted by additive Gaussian noise with known statis-
tics. Therefore, the LS estimator achieves the CRB exactly. On
the other hand, the 2D-MUSIC algorithm performs worse than
the parametric CRB at low SNR, where the algorithm perfor-
mance is noise-limited. When the SNR is higher than 10 dB,
however, the 2D-MUSIC algorithm performance achieves
the parametric CRB, showing that the MUSIC algorithm is
asymptotically consistent. While 2D-MUSIC would follow
the CRB at higher SNR, it starts to show granularity-limited
behavior after 30 dB SNR. In addition, note that 2D-MUSIC
consistently outperforms LS until 50 dB SNRs, and is then
outperformed by LS due to granularity limitation. In contrast,
the 1D-1D MUSIC algorithm cannot achieve the CRB as the
range estimation relies on the noisy angle estimates in the
previous step. The NMSE of this estimator converges to a
higher floor despite using the identical angle and range grids
as 2D-MUSIC. Moreover, both 2D-MUSIC and LS estimators
outperform 1D-1D MUSIC, which shows that it is not practical
for our setup.

B. Location Dependence of the CRB

We will now demonstrate how the parametric CRB changes
based on the UE location. To this end, we consider K = 2
UEs and fix the SNR to 40 dB. In addition, we fix the location
of UE 1, denoted by the red dot in Fig. 3. Then, we compute
the CRB on the parametric channel estimation NMSE for UE
2 over a rectangular region, as shown in Fig. 3, where the
color bar shows the CRB value. While the antenna array is
located at the origin, we choose our rectangular region so all
the points are further than twice the aperture size and closer
than the Fraunhofer distance to the antenna array.

Note that the CRB increases as the UE moves towards the
sides of the region and as the distance increases. This is due
to multiple factors. First, the channel gain decreases as the
distance to the BS increases. However, the CRB trend would
be radial if this were the sole factor. The additional factor

3Note that we apply the same normalization to the CRLB as to the MSE
when obtaining the NMSE.
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Fig. 2: SNR versus NMSEs of parametric and non-parametric channel
estimation along with parametric and non-parametric CRBs, for the
parameters specified in Table I. Note that the CRBs are computed
based on the ensemble of observations over time and hence are valid
for L pilot transmissions.

comes from parametric channel estimation as the non-linearity
coming from the near field channel model causes the CRB
to be a function of the true parameter value. In contrast, the
performance is not affected by UE 2’s proximity to UE 1. This
is because there are enough observations and spatial degrees
of freedom to accurately resolve the two UEs.
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Fig. 3: CRB of channel estimation for the second UE when the first
UE’s location is fixed. The SNR is fixed at 40 dB. Note that the green
dot shows the point closest to the BS which is located at (0, 0), and
the plot starts from twice the aperture size distance, i.e. 3.2m.

VI. CONCLUSIONS

In this letter, we considered the parametric channel estima-
tion problem, where the UEs are within the radiative near field
of the BS array. We used the 2D-MUSIC algorithm, which
estimates the range and azimuth AoAs of the UEs’ channels,
and obtained the channel estimates using the parametric near-
field channel models for aperture antennas. To evaluate the
channel estimation performance of 2D-MUSIC, we derived
the CRB of parametric channel estimation in closed form and

compared the 2D-MUSIC algorithm with a non-parametric
estimator, namely the LS estimator. In addition, we considered
the 2D adaptation of the state-of-the-art algorithm in [7],
namely the 1D-1D-MUSIC. Our numerical results showed that
2D-MUSIC outperforms both the LS estimator and the 1D-
1D-MUSIC algortihm, and achieves the parametric channel
estimation CRB outside the noise-limited and granularity-
limited regions. In addition, we also demonstrated that the 2D-
MUSIC algorithm performance is close to the CRB and hence
is an efficient method to estimate the channel parametrically.
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