
1

Joint Pilot-Based Localization and Channel
Estimation in RIS-Aided Communication Systems
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Abstract—In this letter, we investigate the use of reconfigurable
intelligent surfaces (RISs) to jointly estimate the position and
channel of a user equipment (UE) using uplink pilot signals. We
consider a setup with a user and a base station (BS), where the
direct path between the BS and the UE is blocked and virtual
line-of-sight (LOS) links are created over two reconfigurable in-
telligent surfaces (RISs). We investigate the benefits of exploiting
the channel geometry to estimate the user’s position and the
user-RIS channels jointly in terms of estimation performance
and pilot overhead. To this end, we consider the Cramér-Rao
Lower Bound for channel estimation and UE localization. Our
numerical results show that exploiting the LOS structure of
the channels improves the channel estimation performance by
several orders of magnitude and reduces the channel estimation
performance by reducing the number of unknown parameters.

Index Terms—Channel estimation, Pilot contamination, Local-
ization, Reconfigurable intelligent surface.

I. INTRODUCTION

The rapid advancements of wireless communication sys-
tems have been driven by the ever-increasing demand for
throughput, coverage, and reliability due to social habits
altered by advancing technology. As a result, the current
demands for the sixth generation of wireless communication
systems (6G) require a set of key enabling technologies,
one of which is reconfigurable intelligent surface (RIS) [1].
An RIS is a passive device consisting of multiple meta-
material-based elements whose reflective properties are ex-
ternally controllable, which allows a partial manipulation of
the propagation environment in favor of communicating user
equipments (UEs) [2], [3].

As 6G is designed as a multi-functional system offering
massive connectivity, localization, and sensing services [4],
there exists a multitude of studies considering RIS-aided local-
ization systems and their synergies with communication sys-
tems. In [5], RIS-aided localization and sensing are discussed
from a signal processing perspective. It is discussed that the
RIS acts not only as an additional anchor node for localization
but also as an entity boosting the system performance via con-
figuration optimization. In [6], an RIS-aided near-field local-
ization system is considered under phase-dependent amplitude
variations of the RIS elements. In [7], RIS-aided localization is
considered when some of the RIS elements fail with a certain
probability. Such hardware impairments significantly affect
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localization performance since the system extracts sensitive
geometric information from the observations to obtain the
user location. On the other hand, for pure communication
purposes, the unstructured channel estimates usually suffice.
Nevertheless, localization information has the potential to
boost communication performance significantly since the user
location implicitly provides a significant portion of the channel
state information (CSI), especially in line of sight (LOS)-
dominant channels. To utilize this potential, synergies between
localization and communication are investigated throughout
the literature.

In [8], a strategy to optimize the RIS for localization and
sensing is proposed.. Additionally, a user tracking scheme
is also proposed in this study. In [9], position estimates are
used for channel estimation. In [10], location information is
used to aid the communication system by estimating angle of
departure (AoD)s from Rician channel estimates.

For LOS channels in particular, there are direct relations
between the geometric parameters and the channel coeffi-
cients, therefore, it is rather straightforward to estimate the
channel based on the information obtained from localization.
However, these relations are highly nonlinear, therefore, the
achievable estimation performance is highly dependent on the
values of the parameters. Therefore, theoretical analysis of
the achievable estimation performance is necessary for all
possible values of the parameters. To this end, we consider
the uplink of a two-RIS indoor communication system, where
the base station (BS) localizes a single UE and estimates its
channel based on the location estimate. The BS utilizes the
same set of pilot transmissions for both tasks by estimating
the channel gain, propagation delay, and angle of arrivals
(AoAs) of the signals impinging on both RISs, and using
the RIS and system geometry to estimate the channel and
the UE position. As our performance metric for location
and channel estimation, we consider the Cramér-Rao Lower
Bound (CRLB), which provides a lower bound on the variance
of any unbiased estimator. In addition, we consider the use
of parameter estimates for channel estimation as a potential
solution for the additional pilot overhead caused by using
multiple RISs demonstrated in [11]. Our contributions in this
letter can be summarized as follows:

• For both channel estimation and user localization, we
provide the CRLB on the mean squared error (MSE) in
closed form for all user locations.

• In the presence of multiple RISs, we show that parametric
channel estimation yields more accurate channel esti-
mates with fewer pilot transmissions than non-parametric
channel estimation. We demonstrate this by comparing
the CRLBs on parametric and non-parametric channel
estimation MSEs, where the non-parametric estimation
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Fig. 1: Two-RIS localization system. The coordinate system within
the room is specified with the axis arrows in the upper right corner of
the figure, and the origin of the coordinate system corresponds to the
point marked in the middle of the two side walls on which the RISs
are mounted on, and on the receiver-side wall. The room is 2xmax

meters wide, that is, RIS 1 and RIS 2 are located at the coordinates
(+xmax, 0) and (−xmax, 0) respectively. The room extends down
the y-axis up to ymax meters, i.e., the rear corners correspond to
(+xmax,+ymax) and (−xmax,+ymax).

scheme uses twice as many pilots as the parametric
estimation scheme does.

II. SYSTEM MODEL

We consider the indoor joint communication and localiza-
tion setup aided by two RISs illustrated in Fig. 1. The matrices
H ∈ CM×N and Q ∈ CM×N denote the static and known
channels between the RISs and the M -antenna BS, where N
is the number of elements in each RIS. Moreover, the channels
between the unknown target/UE to the RISs, assumed to be
purely LOS, are denoted by g ∈ CN and p ∈ CN . The signal
received after a single pilot transmission can be expressed as

yp =
√
Pp(HΦ1g +QΦ2p)s+w ∈ CM×1, (1)

where Pp denotes the pilot transmission power, Φk =
Diag(e−jϕk1 , . . . , e−jϕkN ) ∈ CN×N denotes the diagonal
response matrix of RIS k, s ∈ C denotes the transmitted
positioning reference signal, and w ∼ CN (0, σ2

wIM ) denotes
the additive receiver noise. When considering the estimation
of channel-related parameters, it is more convenient to rewrite
(1) as

yp =
√
Pp(ϕ1DHg + ϕ2DQp)s+w ∈ CM×1, (2)

where DH ≜ Diag(H1, . . . ,HN ) ∈ CMN×N , DQ ≜
Diag(Q1, . . . ,QN ) ∈ CMN×N with Hn and Qn denoting
the n-th columns of H and Q, respectively, and ϕk =
diag(Φk) ⊗ IM ∈ CMN×M for k = 1, 2. DH and DQ

are block diagonal matrices built of M × 1 blocks, and the
diagonal blocks contain the individual columns of H and Q.
Assuming that the pilot transmission is repeated over time
L ≥ N times with varying RIS configurations and s[l] = 1
for l = 1, . . . , L, we can express the collection of observations
Yp ≜ [yT

p [1], . . . ,y
T
p [L]]

T as
Yp =

√
Pp(B1DHg +B2DQp) +W ∈ CLM , (3)

where Bk ≜ [ϕk[1], . . . ,ϕk[L]]
T ∈ CLM×MN and W ∼

CN (0, σ2
wILM ). Note that ϕk[l] also contains the pilot signals

s[l], however, since we choose s[l] = 1 for l = 1, . . . , L, ϕk[l]
are the same as the RIS configruations.

Since we consider purely LOS channels, the unknown g
and p channels are structured based on the RIS geometries,
attenuation, and propagation delay. For both RISs, we consider
the uniform linear array (ULA) geometry and perform 2D
localization in the far-field region. Based on the azimuth AoAs
φ1 and φ2 on RIS 1 and RIS 2, respectively, g and p can be
expressed as

g =
√
α1e

−j2πfcτ1a(φ1), (4a)

p =
√
α2e

−j2πfcτ2a(φ2), (4b)

where a(φ) =
[
1 e−j2π∆

λ sin(φ) . . . e−j2π(N−1)∆
λ sin(φ)

]T
denotes the array steering vector for the ULA geometry.
In the next section, we derive the CRLB on the channel
estimation MSE and the UE localization error.

III. CRLB ON LOCALIZATION AND CHANNEL
ESTIMATION

In a parameter estimation problem, it is useful to determine
an achievable lower bound on the estimation performance to
serve as the gold standard. The CRLB—the inverse of the
Fisher Information Matrix (FIM)—provides a lower bound on
the MSE of any unbiased estimator [12] via the following
matrix inequality:

Cov(θ̂(X)) ⪰ I−1(X;θ) (5)

for an estimate of a parameter vector θ based on an observa-
tion vector X. Here, Cov(θ̂(X)) = E[(θ̂(X)−θ)(θ̂(X)−θ)H ]
is the covariance matrix and, consequently, the bound on the
sum MSE can be expressed as

E[∥θ̂(X)− θ∥2] ≥ tr
(
I−1(X;θ)

)
. (6)

In a generic vector parameter estimation problem, the FIM is
computed via the following equation [13, Eq. 3.21]:

[I(X;θ)]ij = −E
[
∂2 ln(f(X;θ))

∂θiθj

]
, (7)

where f(X;θ) denotes the likelihood function of the obser-
vation X based on the unknown vector parameter θ. In our
channel estimation problem, the received pilot signal in (3)
can be expressed as

Yp =
√

Pp

[
B1DH B2DQ

]︸ ︷︷ ︸
≜F

[
g
p

]
︸︷︷︸
≜v

+W. (8)

Here, v denotes the ensemble of unknown channel coeffi-
cients without any LOS parametrization. In this form, we have
a linear observation model with additive complex Gaussian
noise. Consequently, it is much easier to compute the FIM
here than explicitly differentiating the log-likelihood function
as one would do for a generic parameter-observation model.
Using this special form of the observation model in (8), the
FIM can be expressed as

I(Yp;v) = PpF
HI(W)F, (9)

where I(W) denotes the FIM with respect to a translation
parameter defined in [14, Eq. 8]. Since w is Gaussian, it
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satisfies the relation I(W) ⪰ 1
σ2
w
I in [14, Eq. 10] with

equality. Therefore, (9) can be simplified as

I(Yp;v) =
Pp

σ2
w

FHF ∈ C2N×2N . (10)

The rank of (10) depends on the column rank of F, which
depends on the choice of B1 and B2. To ensure that the FIM
is non-singular, one must have L ≥ 2N , and F must have full
column rank. To this end, it is tempting to choose B1 and B2

such that BH
1 B2 = 0 as this configuration allows the pilot

signals to explore all the unknown dimensions of the channel.
When the channels gk and pk do not exhibit any structure,
this method provides accurate channel estimates, as shown in
[11]. For the non-parametric channel estimation problem, the
signal model is as in (8), and the maximum likelihood (ML)
estimate of v can be expressed as

v̂ =
1√
Pp

(FHF)−1FHyp. (11)

For (11) to exist, FHF should be invertible, which is main-
tained by choosing BH

1 B2 = 0. This also implies that the FIM
is invertible, that is the CRLB exists and can be expressed as

I−1(Yp;v) =
σ2
w

Pp
(FHF)−1. (12)

On the other hand, the error covariance matrix achieved by
(11) becomes
E[(v̂ − v)(v̂ − v)H ] = E[v̂v̂H ] + vvH − 2Re{E[v̂vH ]}

=
1

Pp
(FHF)−1FHE[ypy

H
p ]F(FHF)−1

+ vvH − 2Re

{
1√
Pp

(FHF)−1FHE[ypv
H ]

}

= vvH +
σ2
w

Pp
(FHF)−1 + vvH − 2vvH =

σ2
w

Pp
(FHF)−1,

(13)

which shows that v̂ achieves the CRLB when FHF is
full-rank. While this estimator works successfully when the
channels of interest do not exhibit any structure, the minimum
number of pilots required increases significantly with an
increasing number of RIS elements.

A. CRLB on UE Localization Error

So far, we have derived the FIM between the observation yp

and the channel coefficients v when the UE-RIS channels do
not exhibit any structure. When these channels have paramet-
ric LOS structures, however, they can be expressed in terms
of much fewer parameters, as in (4), which is quite convenient
in terms of reducing the number of pilot transmissions since
the number of RIS elements N can be very large in practice.
To overcome this, we can exploit our knowledge of the RISs’
geometry since each N -dimensional channel can be expressed
in terms of three parameters: attenuation, propagation delay,
and azimuth angle of arrival While αk, τk, and φk seem
like independent parameters, they are coupled through the UE
position z ≜

[
xt yt

]T
. While the propagation delays’ and

azimuth AoAs’ relations with the UE are straightforward, we

can use the free space path loss model to relate the attenuation
parameters to (xt, yt) as follows:

α1 =

(
c

4πfc
√

y2t + (xmax − xt)2

)2

(14a)

α2 =

(
c

4πfc
√

y2t + (xmax + xt)2

)2

(14b)

τ1 =

√
y2t + (xmax − xt)2

c
(14c)

τ2 =

√
y2t + (xmax + xt)2

c
(14d)

φ1 = tan−1

(
yt

xmax − xt

)
(14e)

φ2 = tan−1

(
yt

xmax + xt

)
(14f)

By combining (4) and (14), we can define the following non-
linear transformation between the UE coordinates and the
channels to be estimated as β(z) ≜ v.

To obtain the FIM between Yp and z, we need to use a
well-known result [13, Eq. 3.30]:

I−1(Yp;β(z)) = JH
β I−1(Yp; z)Jβ, (15)

where Jβ is the Jacobian of β w.r.t. z, which is a 2 × 2N

matrix where the ijth entry is [Jβ]ij =
∂βj(z)
∂zi

. Using the
Moore-Penrose pseudoinverse of the Jacobian, one can obtain
I−1(Yp; z) as

I−1(Yp; z) = (JβJ
H
β )−1JβI

−1(Yp;β(z))J
H
β (JβJ

H
β )−1.

(16)
To obtain I−1(Yp; z) in closed form, what remains is to

obtain Jβ. To this end, we can express Jβ as a 2 × 2 block
matrix of 1×N entries:

Jβ =

[
∂g
∂xt

∂p
∂xt

∂g
∂yt

∂p
∂yt

]
(17)

By using the chain rule for derivatives on (4), we obtain

∂g

∂xt
= e−j2πfcτ1

[
1

2
√
α1

∂α1

∂xt
a(φ1)

− j2πfc
∂τ1
∂xt

√
α1a(φ1) +

√
α1

∂a(φ1)

∂φ1

∂φ1

∂xt

]
, (18a)

∂p

∂xt
= e−j2πfcτ2

[
1

2
√
α2

∂α2

∂xt
a(φ2)

− j2πfc
∂τ2
∂xt

√
α1a(φ2) +

√
α2

∂a(φ2)

∂φ2

∂φ2

∂xt

]
, (18b)

∂g

∂yt
= e−j2πfcτ1

[
1

2
√
α1

∂α1

∂yt
a(φ1)

− j2πfc
∂τ1
∂yt

√
α1a(φ1) +

√
α1

∂a(φ1)

∂φ1

∂φ1

∂yt

]
, (18c)

∂p

∂yt
= e−j2πfcτ2

[
1

2
√
α2

∂α2

∂yt
a(φ2)

− j2πfc
∂τ2
∂yt

√
α1a(φ2) +

√
α2

∂a(φ2)

∂φ2

∂φ2

∂yt

]
, (18d)
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Fig. 2: The geometrical relationship between the azimuth AoAs and
the cartesian coordinates.

In (18), the derivatives to be evaluated are ∂a
∂φ , ∂αk

∂xt
,∂αk

∂yt
,

∂τk
∂xt

,∂τk∂yt
, ∂φk

∂xt
, and ∂φk

∂yt
. Using the array steering vector

formula and (14), we can evaluate these as follows:
∂a

∂φ
=
[
0 . . . −j2π∆

λ (N − 1) cos(φ)e−j2π∆
λ (N−1) sin(φ)

]T
(19a)

∂αk

∂xt
=

±32π2f2
c c

2(xmax ∓ xt)

[16π2f2
c (xmax ∓ xt)2 + 16π2f2

c y
2
t ]

2 (19b)

∂αk

∂yt
=

−32π2f2
c c

2yt

[16π2f2
c (xmax ∓ xt)2 + 16π2f2

c y
2
t ]

2 (19c)

∂τk
∂xt

=
∓(xmax ∓ xt)

c
√

(xmax ∓ xt)2 + y2t
(19d)

∂τk
∂yt

=
yt

c
√

(xmax ∓ xt)2 + y2t
(19e)

∂φk

∂xt
=

∓y2t
y2t + (xmax ∓ xt)2

(19f)

∂φk

∂yt
=

(xmax ∓ xt)

y2t + (xmax ∓ xt)2
(19g)

As a result, we obtain the Jacobian in closed form and
therefore have I−1(Yp; z). The diagonal entries of this matrix
provide a lower bound on the squared error in estimating xt

and yt. To obtain the localization error bound (LEB) in meters,
we just have to calculate the 2-norm of the resulting error
vector. Consequently, the LEB becomes

LEB =
√

tr(I−1(Yp; z)). (20)

B. CRLB on Channel Estimation MSE
The inverse FIM between Yp and the cartesian coordinates

of the UE we derived using the channel geometry provides
the goldens standard for any unbiased location estimator.
Using a similar idea, we can obtain a lower bound on the
performance of unbiased parametric channel estimators by
using the non-linear transformation v = β(z), similar to the
parametric estimation idea in [15]. While we do not derive
any parametric estimators in this letter, we provide the CRLB
as an indicator of what is achievable if a parametric channel
estimator were to be designed for such a system. To determine
the CRLB on parametric channel estimation MSE, using (15)
suffices, that is:

Cov(β(ẑ)) ⪰ JH
β I−1(Yp; z)Jβ. (21)

Parameter Value
Pp 50 dBm
σ2
w −104 dBm
fc 30GHz
M 64
N 16
L 16, 32

xmax 20m
ymax 40m

TABLE I: System parameters used for the numerical results. The
value for σ2

w is obtained by considering a 10 MHz transmission
bandwidth and a noise power spectral density of −174dBm/Hz. In
addition, the BS is located at (10,−40) according to the coordinate
system provided in Fig. 2.

-15 -10 -5 0 5 10 15

5

10

15

20

25

30

35

40 10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

Fig. 3: Non-parametric channel estimation MSE for BH
1 B2 = 0.

Note that we transmit L = 2N pilots for non-parametric estimation
as opposed to L = N pilots for parametric estimation.

IV. NUMERICAL RESULTS

In this section, we provide numerical examples for the
analysis we have provided. To this end, we consider the
set of system parameters in Table I. To capture large-scale
effects, we consider the free space path loss model. Fig. 3
and 4 show the normalized channel estimation CRLB, that
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Fig. 4: CRLB on the parametric channel estimation MSE for B1 =
B2. Note that the channel estimation MSE is decreased by three
orders of magnitude compared to Fig. 3 although half as many pilots
are used.
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Fig. 5: CRLB on UE localization in meters. Note that the figure
indicates sub-decimeter localization accuracy for the entire area,
and almost centimeter-level localization accuracy around where the
localization geometry is the most favorable.

is, we normalize the traces of the CRLBs in (12) and (21),
respectively, by ∥v∥22= 2N . Note that parametric estimation
vastly outperforms the non-parametric estimation. Although
the non-parametric estimation uses twice as many pilots as the
parametric estimation, the knowledge of the channel structure
in parametric estimation significantly reduces the number
of unknown parameters and boosts the channel estimation
performance by three orders of magnitude. Non-parametric
channel estimation also yields very high MSE due to the high
carrier frequency and severe path loss.

In Fig. 5, we plot the LEB (in meters) throughout the room,
as provided by (20). Note that for a large part of the surface
of the room, the localization accuracy is at the sub-decimeter
level. However, the significant inaccuracy at around yt = 0
must be noted. In this region, both RISs receive the UE’s
signal almost perpendicularly, and hence the observation is
not so sensitive to the exact position of the UE, resulting in
low Fisher information. Even in this region, the accuracy is
between meter and decimeter levels.

V. CONCLUSION

In this letter, we investigated the use of RISs for an
integrated communication and localization system in an indoor
environment. We proposed a setup with a single-antenna
UE and an M -antenna BS between which pure LOS links
are maintained via two N -element RISs. By exploiting the
channel and indoor geometries, we showed that it is possible
to use the same pilot signals to estimate the position of the
UE, and the UE-RIS channels. As the performance metric, we
used the CRLB, the lower bound on the MSE of any unbiased
estimator. Through numerical examples, we showed that it is
feasible to use two RISs to locate an indoor user and utilize
the location information to estimate the unknown channels.
Considering the parametric structures of LOS channels not
only brings the benefits of reducing the pilot transmission
overhead, but also improves the channel estimation perfor-
mance by multiple orders of magnitude and hence acts as a

precursor to a plethora of possibilities in localization-aided
channel estimation to develop more pilot-efficient systems. In
this letter, we considered the estimation of pure-LOS channels
exploiting the channel structure, which is quite significant due
to the more structured nature of mmWave channels compared
to the channels with µ-wave frequencies [16]. While our
analysis is extendable to scenarios with a direct UE-BS path,
we considered a setup where the direct path is blocked in this
work, which is realistic at mmWave/THz frequencies due to
high penetration losses. Although we ignored the presence
of scattering clusters, the analysis provided in this paper
is extendable to clustered channel models, which will be
investigated in future work.
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